RESUMO
The activity and selectivity of molecular catalysts for the electrochemical CO2 reduction reaction (CO2RR) are influenced by the induced electric field at the electrode/electrolyte interface. We present here a novel electrolyte immobilization method to control the electric field at this interface by positively charging the electrode surface with an imidazolium cation organic layer, which significantly favors CO2 conversion to formate, suppresses hydrogen evolution reaction, and diminishes the operating cell voltage. Those results are well supported by our previous DFT calculations studying the mechanistic role of imidazolium cations in solution for CO2 reduction to formate catalyzed by a model molecular catalyst. This smart electrode surface concept based on covalent grafting of imidazolium on a carbon electrode is successfully scaled up for operating at industrially relevant conditions (100 mA cm-2) on an imidazolium-modified carbon-based gas diffusion electrode using a flow cell configuration, where the CO2 conversion to formate process takes place in acidic aqueous solution to avoid carbonate formation and is catalyzed by a model molecular Rh complex in solution. The formate production rate reaches a maximum of 4.6 gHCOO- m-2 min-1 after accumulating a total of 9000 C of charge circulated on the same electrode. Constant formate production and no significant microscopic changes on the imidazolium-modified cathode in consecutive long-term CO2 electrolysis confirmed the high stability of the imidazolium organic layer under operating conditions for CO2RR.
RESUMO
Molecular self-assembled films have recently attracted increasing attention within the field of nanotechnology as they offer a route to obtain new materials. However, careful selection of the molecular precursors and substrates, as well as exhaustive control of the system evolution is required to obtain the best possible outcome. The three-fold rotational symmetry of melamine molecules and their capability to form hydrogen bonds make them suitable candidates to synthesize this type of self-assembled network. In this work, we have studied the polymorphism of melamine nanostructures on Au(111) at room temperature. We find two coverage-dependent phases: a honeycomb structure (α-phase) for submonolayer coverage and a close-packed structure (ß-phase) for full monolayer coverage. A combined scanning tunnel microscopy and density functional theory based-calculations study of the transition regime where both phases coexist allows describing the mechanism underlying this coverage driven phase transition in terms of the changes in the molecular lateral tension.
RESUMO
Graphene-based nanostructures exhibit electronic properties that are not present in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons leads to the opening of substantial electronic bandgaps that are directly linked to their structural boundary conditions. Nanostructures with zigzag edges are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics. The edge states of zigzag graphene nanoribbons (ZGNRs) are predicted to couple ferromagnetically along the edge and antiferromagnetically between the edges, but direct observation of spin-polarized edge states for zigzag edge topologies--including ZGNRs--has not yet been achieved owing to the limited precision of current top-down approaches. Here we describe the bottom-up synthesis of ZGNRs through surface-assisted polymerization and cyclodehydrogenation of specifically designed precursor monomers to yield atomically precise zigzag edges. Using scanning tunnelling spectroscopy we show the existence of edge-localized states with large energy splittings. We expect that the availability of ZGNRs will enable the characterization of their predicted spin-related properties, such as spin confinement and filtering, and will ultimately add the spin degree of freedom to graphene-based circuitry.
RESUMO
Dehydrogenation reactions are key steps in many metal-catalyzed chemical processes and in the on-surface synthesis of atomically precise nanomaterials. The principal role of the metal substrate in these reactions is undisputed, but the role of metal adatoms remains, to a large extent, unanswered, particularly on gold substrates. Here, we discuss their importance by studying the surface-assisted cyclodehydrogenation on Au(111) as an ideal model case. We choose a polymer theoretically predicted to give one of two cyclization products depending on the presence or absence of gold adatoms. Scanning probe microscopy experiments observe only the product associated with adatoms. We challenge the prevalent understanding of surface-assisted cyclodehydrogenation, unveiling the catalytic role of adatoms and their effect on regioselectivity. The study adds new perspectives to the understanding of metal catalysis and the design of on-surface synthesis protocols for novel carbon nanomaterials.
RESUMO
On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1,4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures.
RESUMO
The activation, hydrogenation, and covalent coupling of polycyclic aromatic hydrocarbons (PAHs) are processes of great importance in fields like chemistry, energy, biology, or health, among others. So far, they are based on the use of catalysts which drive and increase the efficiency of the thermally- or light-induced reaction. Here, we report on the catalyst-free covalent coupling of nonfunctionalized PAHs adsorbed on a relatively inert surface in the presence of atomic hydrogen. The underlying mechanism has been characterized by high-resolution scanning tunnelling microscopy and rationalized by density functional theory calculations. It is based on the formation of intermediate radical-like species upon hydrogen-induced molecular superhydrogenation which favors the covalent binding of PAHs in a thermally activated process, resulting in large coupled molecular nanostructures. The mechanism proposed in this work opens a door toward the direct formation of covalent, PAH-based, bottom-up synthesized nanoarchitectures on technologically relevant inert surfaces.
RESUMO
A bottom up method for the synthesis of unique tetracene-based nanoribbons, which incorporate cyclobutadiene moieties as linkers between the acene segments, is reported. These structures were achieved through the formal [2+2] cycloaddition reaction of ortho-functionalized tetracene precursor monomers. The formation mechanism and the electronic and magnetic properties of these nanoribbons were comprehensively studied by means of a multitechnique approach. Ultra-high vacuum scanning tunneling microscopy showed the occurrence of metal-coordinated nanostructures at room temperature and their evolution into nanoribbons through formal [2+2] cycloaddition at 475â K. Frequency-shift non-contact atomic force microscopy images clearly proved the presence of bridging cyclobutadiene moieties upon covalent coupling of activated tetracene molecules. Insight into the electronic and vibrational properties of the so-formed ribbons was obtained by scanning tunneling microscopy, Raman spectroscopy, and theoretical calculations. Magnetic properties were addressed from a computational point of view, allowing us to propose promising candidates to magnetic acene-based ribbons incorporating four-membered rings. The reported findings will increase the understanding and availability of new graphene-based nanoribbons with high potential in future spintronics.
RESUMO
Transient electrochemical experiments associated with the collisions between hydrothermally synthesized LiCoO2 (LCO) nanoparticles/aggregates of different sizes and a polarized gold ultramicroelectrode (UME) were used as a new additive-free analytical tool applied to Li ion insertion compounds. The size of the LCO nanoparticles/aggregates, ranging from 75 to 450 nm, the diffusion coefficient of the LCO nanoparticles/aggregates in suspension (â¼8 × 10-9 cm2 s-1), and the Li ion diffusion coefficient within crystalline LCO nanoparticles (â¼1.3 × 10-11 cm2 s-1) were estimated from single collision events. Interestingly, the charge exchanged during each nanoparticle collision was related to the size of the corresponding LCO aggregate, which enables electrochemical sizing distribution measurement displaying evident concordance with optical techniques, including dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM). Studying the nanoparticle collision frequency on the UME surface as a function of the LCO nanoparticle concentration allows estimation of the diffusion coefficient of LCO nanoparticles/aggregates in suspension. Finally, from the current decay observed in chronoamperometry after LCO nanoparticle collision on the polarized UME surface, which corresponds to the LCO oxidation (i.e. the Li+ deinsertion reaction), the Li ion diffusion coefficient within the host crystalline material is estimated. This is a key parameter, which controls the cycle lifetime and charge rate in Li ion battery performance. This new approach thus allows a fine description of the nanoparticle properties, which includes sizing as well as estimation of the Li ion diffusion coefficient within the host crystalline material.
RESUMO
An electrochemical sensor for the carcinogen 4,4'-oxydianiline (Oxy) is described. The method is based on the ability of MoS2 nanosheets to preconcentrate Oxy. A glassy carbon electrode (GCE) was covered, by drop-casting, with MoS2 nanosheets that were obtained by exfoliation. X-Ray photoemission spectroscopy indicates that Oxy accumulates on the MoS2 nanosheets through an electropolymerization process similar to that reported for aniline. Both electrochemical impedance spectroscopy and atomic force microscopy were used to characterize the electrode surface at the different stages of device fabrication. Employing the current measured at +0.27 V vs. Ag/AgCl after Oxy adsorption, the modified GCE enables the voltammetric detection of Oxy at 80 nM levels with relative errors and relative standard deviations of <8.3 and <5.6%, respectively, at all the concentrations studied. The method was applied to the selective determination of Oxy in spiked river water samples. Very good selectivity and recoveries of around 95% in average are found. Graphical abstractSchematic representation of 4,4-oxydianiline electrochemical polymerization and preconcentration onto molybdenum disulfide nanosheets for the diamine determination in river waters.
Assuntos
Carcinógenos/análise , Dissulfetos/química , Molibdênio/química , Nanoestruturas/química , Éteres Fenílicos/análise , Adsorção , Carbono/química , Carcinógenos/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Éteres Fenílicos/química , Rios/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/químicaRESUMO
The number of publications devoted to studying electrochemical reactions in room temperature ionic liquids (RTILs) is constantly growing, but very few of them have been devoted to defining proper experimental conditions to obtain reproducible electrochemical results. In this work, we demonstrate that the combination of a proper RTIL purification treatment and a filtered Ar gas stream allow us to obtain featureless voltammograms in [C4mim][BF4], [C4mim][NTf2], and [C4m2im][NTf2], which otherwise present signals associated with different types of impurities such as water and some minor electroactive impurities acquired during the RTIL synthesis process. Moreover, we demonstrate that bubbling Ar, or another inert gas, through the electrolyte in order to purge O2 dissolved in RTILs is one of the major sources of water and O2 impurities incorporated in RTILs within the electrochemical cell. To overcome this source of water uptake, we have incorporated a gas stream purification filter before the gas reaches the RTIL in the electrochemical cell. To illustrate the effect of these impurities in relevant electrocatalytic studies, we study the electrocatalytic reduction of CO2 on Pt nanoparticles and the key role of an appropiate filter when the CO2 gas stream is bubbled within imidazolium based RTILs. Our cyclic voltammetric studies point out that CO2 electroreduction on Pt nanoparticles only presents activity in [C4mim][NTf2] and [C4m2im][NTf2], thus suggesting that the C-2 position on the imidazolium ring is not the key position in CO2 electrochemical reduction. In contrast, the same Pt nanoparticles are inactive towards CO2 electroreduction in [C4mim][BF4], which is a more hydrophilic RTIL.
RESUMO
The electronic properties of graphene nanoribbons grown on metal substrates are significantly masked by the ones of the supporting metal surface. Here, we introduce a novel approach to access the frontier states of armchair graphene nanoribbons (AGNRs). The in situ intercalation of Si at the AGNR/Au(111) interface through surface alloying suppresses the strong contribution of the Au(111) surface state and allows for an unambiguous determination of the frontier electronic states of both wide and narrow band gap AGNRs. First-principles calculations provide insight into substrate induced screening effects, which result in a width-dependent band gap reduction for substrate-supported AGNRs. The strategy reported here provides a unique opportunity to elucidate the electronic properties of various kinds of graphene nanomaterials supported on metal substrates.
RESUMO
We report on the surface-catalyzed formal [2+2] and [2+2+2] cycloadditions of ortho-activated tetracene species on a Ag(111) substrate under ultrahigh vacuum conditions. Three different products are obtained: tetracene dimers, trimers, and tetramers. The former results from the formation of a four-membered ring while the other two arise from cyclization into six-membered rings. These on-surface reactions have been monitored by scanning tunneling microscopy and rationalized by density functional theory calculations. Our approach, based on the reaction of ortho-dihalo precursor monomers via formal cycloadditions, establishes an additional method for the highly active field of on-surface synthesis and enables the development of novel 1D and 2D covalent carbon nanostructures.
RESUMO
Gastric involvement with the varicella-zoster virus is an uncommon clinical condition where early suspicion and diagnosis are important to prevent the consequences deriving from its high morbidity and mortality, which in immunocompromised patients oscillate between 9% and 41% according to the various series. Two cases of gastric involvement with the varicella-zoster virus (VZV) in two patients with blood cancer are reported below. Gastric lesions are usually preceded by typical papulovesicular skin lesions. When gastric involvement is the first symptom of the disease its diagnosis and management may be delayed, which may entail severe consequences for immunocompromised patients. It is therefore that we suggest its inclusion in the algorithm for immunocompromised patients with abdominal pain and ulcer-like endoscopic lesions.
Assuntos
Varicela/complicações , Varicela/tratamento farmacológico , Neoplasias Hematológicas/complicações , Gastropatias/complicações , Gastropatias/tratamento farmacológico , Dor Abdominal , Aciclovir/uso terapêutico , Antivirais/uso terapêutico , Feminino , Humanos , Hospedeiro Imunocomprometido , Pessoa de Meia-IdadeRESUMO
Graphene nanoribbons (GNRs), defined as nanometer-wide strips of graphene, have attracted increasing attention as promising candidates for next-generation semiconductors. Here, we demonstrate a bottom-up strategy toward novel low band gap GNRs (Eg = 1.70 eV) with a well-defined cove-type periphery both in solution and on a solid substrate surface with chrysene as the key monomer. Corresponding cyclized chrysene-based oligomers consisting of the dimer and tetramer are obtained via an Ullmann coupling followed by oxidative intramolecular cyclodehydrogenation in solution, and much higher GNR homologues via on-surface synthesis. These oligomers adopt nonplanar structures due to the steric repulsion between the two C-H bonds at the inner cove position. Characterizations by single crystal X-ray analysis, UV-vis absorption spectroscopy, NMR spectroscopy, and scanning tunneling microscopy (STM) are described. The interpretation is assisted by density functional theory (DFT) calculations.
RESUMO
Scanning tunneling microscopy, temperature-programmed reaction, near-edge X-ray absorption fine structure spectroscopy, and density functional theory calculations were used to study the adsorption and reactions of phenylacetylene and chlorobenzene on Ag(100). In the absence of solvent molecules and additives, these molecules underwent homocoupling and Sonogashira cross-coupling in an unambiguously heterogeneous mode. Of particular interest is the use of silver, previously unexplored, and chlorobenzene-normally regarded as relatively inert in such reactions. Both molecules adopt an essentially flat-lying conformation for which the observed and calculated adsorption energies are in reasonable agreement. Their magnitudes indicate that in both cases adsorption is predominantly due to dispersion forces for which interaction nevertheless leads to chemical activation and reaction. Both adsorbates exhibited pronounced island formation, thought to limit chemical activity under the conditions used and posited to occur at island boundaries, as was indeed observed in the case of phenylacetylene. The implications of these findings for the development of practical catalytic systems are considered.
RESUMO
The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.
Assuntos
Dióxido de Carbono/química , Técnicas Eletroquímicas , Imidazóis/química , Líquidos Iônicos/química , Platina/química , Eletrodos , Estrutura Molecular , Oxirredução , Propriedades de SuperfícieRESUMO
Graphite vaporization provides an uncontrolled yet efficient means of producing fullerene molecules. However, some fullerene derivatives or unusual fullerene species might only be accessible through rational and controlled synthesis methods. Recently, such an approach has been used to produce isolable amounts of the fullerene C(60) from commercially available starting materials. But the overall process required 11 steps to generate a suitable polycyclic aromatic precursor molecule, which was then dehydrogenated in the gas phase with a yield of only about one per cent. Here we report the formation of C(60) and the triazafullerene C(57)N(3) from aromatic precursors using a highly efficient surface-catalysed cyclodehydrogenation process. We find that after deposition onto a platinum (111) surface and heating to 750 K, the precursors are transformed into the corresponding fullerene and triazafullerene molecules with about 100 per cent yield. We expect that this approach will allow the production of a range of other fullerenes and heterofullerenes, once suitable precursors are available. Also, if the process is carried out in an atmosphere containing guest species, it might even allow the encapsulation of atoms or small molecules to form endohedral fullerenes.
RESUMO
One of the main challenges to expand the use of titanium dioxide (titania) as a photocatalyst is related to its large band gap energy and the lack of an atomic scale description of the reduction mechanisms that may tailor the photocatalytic properties. We show that rutile TiO2 single crystals annealed in the presence of atomic hydrogen experience a strong reduction and structural rearrangement, yielding a material that exhibits enhanced light absorption, which extends from the ultraviolet to the near-infrared (NIR) spectral range, and improved photoelectrocatalytic performance. We demonstrate that both magnitudes behave oppositely: heavy/mild plasma reduction treatments lead to large/negligible spectral absorption changes and poor/enhanced (×10) photoelectrocatalytic performance, as judged from the higher photocurrent. To correlate the photoelectrochemical performance with the atomic and chemical structures of the hydrogen-reduced materials, we have modeled the process with in situ scanning tunneling microscopy measurements, which allow us to determine the initial stages of oxygen desorption and the desorption/diffusion of Ti atoms from the surface. This multiscale study opens a door toward improved materials for diverse applications such as more efficient rutile TiO2-based photoelectrocatalysts, green photothermal absorbers for solar energy applications, or NIR-sensing materials.
RESUMO
Fertilizers play a vital role in the food-energy-water nexus. The traditional method of artificial nitrogen fixation to produce ammonia is a high-energy intensive centralized process that has caused an imbalance of the N-cycle due to the release of N-species to water. Electrocatalytic nitrate reduction (ENR) to ammonia is a promising N-resource recovery alternative that can enable the circular reuse of ammonia in decentralized settings. However, the primary challenge is identifying selective and affordable electrocatalysts. Identifying electrodes that rely on something other than platinum-group metals is required to surpass barriers associated with using expensive and endangered elements. In this study, an earth-abundant bimetallic catalyst, Cu/Co(OH)x, prepared and optimized by electrodeposition, demonstrates superior ammonia production. Under environmentally relevant conditions of 30 mg NO3--N L-1, Cu/Co(OH)x showed higher ammonia production than pristine Cu foam with 0.7 and 0.3 mmol NH3 gcat-1 h-1, respectively. The experimental evaluation demonstrated direct reduction and catalytic hydrogenation mechanisms in Cu/Co(OH)x sites. Leaching analyses suggest that Cu/Co(OH)x has outstanding stability with negligible metal concentration below the maximum contaminant level for both Cu and Co. These results provide a framework for using earth-abundant materials in ENR with comparable efficiency and energy consumption to platinum-group materials.
RESUMO
Two different metal-organic frameworks with either a honeycomb or Kagome structure were grown on Cu(111) using para-aminophenol molecules and native surface adatoms. Although both frameworks are made up from the same chemical species, they are structurally different emphasizing the critical role being played by the reaction conditions during their growth. This work highlights the importance of the balance between thermodynamics and kinetics in the final structure of surface-supported metal-organic networks.