Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 82(4): 543-552, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33319390

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs due to their antipyretic, anti-inflammatory, and analgesic properties. However, NSAIDs can cause adverse reactions, mainly gastrointestinal damage. Omeprazole (OMP) exhibits gastroprotective activity, but its protection is limited at the intestinal level. For this reason, it is essential to utilize a combination of therapies that provide fewer adverse effects, such as the combined treatment of OMP and docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid with anti-inflammatory, analgesic, and gastroprotective activities. The objective of this study was to evaluate the pharmacological interaction between DHA and OMP in a murine model of indomethacin-induced gastrointestinal damage. The gastroprotective and enteroprotective effects of DHA (0.3-10 mg/kg, p.o.), OMP (1-30 mg/kg, p.o.), or the combination treatment of both compounds (3-56.23 mg/kg, p.o.) were evaluated in the indomethacin-induced gastrointestinal damage model (30 mg/kg, p.o.). Since DHA and OMP exhibited a protective effect in a dose-responsive fashion, the ED30 for each individual compound was determined and a 1:1 combination of DHA and OMP was tested. Isobolographic analysis was used to determine any pharmacodynamic interactions. Since the effective experimental dose ED30 (Zexp) of the combined treatment of DHA and OMP was lower than the theoretical additive dose (Zadd; p < .05) in both the stomach and small intestine their protective effects were considered synergistic. These results indicate that the synergistic protective effects from combined treatment of DHA and OMP could be ideal for mitigating damage generated by NSAIDs at the gastrointestinal level.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Indometacina/efeitos adversos , Omeprazol/farmacologia , Animais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Omeprazol/administração & dosagem , Ratos , Ratos Wistar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38085291

RESUMO

Therapeutic effect of non-steroidal anti-inflammatory drugs (NSAIDs) has been related with gastrointestinal injury. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (PUFA), can prevent gastric and small intestinal damage. Nonetheless, contribution of antioxidative action in the protective effect of DHA has not been evaluated before in the small intestine injury after indomethacin treatment. Pathogenesis of NSAID-induced small intestinal injury is multifactorial, and reactive oxidative species have been related to indomethacin's small intestinal damage. The present work aimed to evaluate antioxidative activity in the protective action of DHA in the indomethacin-induced small intestinal damage. Female Wistar rats were gavage with DHA (3 mg/kg) or omeprazole (3 mg/kg) for 10 days. Each rat received indomethacin (3 mg/kg, orally) daily to induce small intestinal damage. The total area of intestinal ulcers and histopathological analysis were performed. In DHA-treated rats, myeloperoxidase and superoxide dismutase activity, glutathione, malondialdehyde, leukotriene, and lipopolysaccharide (LPS) levels were measured. Furthermore, the relative abundance of selective bacteria was assessed. DHA administration (3 mg/kg, p.o.) caused a significant decrease in indomethacin-induced small intestinal injury in Wistar rats after 10 days of treatment. DHA's enteroprotection resulted from the prevention of an increase in myeloperoxidase activity, and lipoperoxidation, as well as an improvement in the antioxidant defenses, such as glutathione levels and superoxide dismutase activity in the small intestine. Furthermore, we showed that DHA's enteroprotective effect decreased significantly LPS levels in indomethacin-induced injury in small intestine. Our data suggest that DHA's enteroprotective might be attributed to the prevention of oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA