Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Cell Mol Med ; 28(8): e18196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38534093

RESUMO

Liver cirrhosis is a silent disease in humans and is experimentally induced by many drugs and toxins as thioacetamide (TAA) in particular, which is the typical model for experimental induction of hepatic fibrosis. Thus, the objective of the present study was to elucidate the possible protective effects of lactéol® forte (LF) and quercetin dihydrate (QD) against TAA-induced hepatic damage in male albino rats. Induction of hepatotoxicity was performed by TAA injection (200 mg/kg I/P, twice/ week) in rats. LF (1 × 109 CFU/rat 5 times/week) and QD (50 mg/kg 5 times/week) treated groups were administered concurrently with TAA injection (200 mg/kg I/P, twice/ week). The experimental treatments were conducted for 12 weeks. Hepatotoxicity was evaluated biochemically by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) in the serum and histopathologically with the scoring of histopathological changes besides histochemical assessment of collagen by Masson's trichrome and immunohistochemical analysis for α-smooth muscle actin (α-SMA), Ki67 and caspase-3 expression in liver sections. Our results indicated that LF and QD attenuated some biochemical changes and histochemical markers in TAA-mediated hepatotoxicity in rats by amelioration of biochemical markers and collagen, α-SMA, Ki67 and caspase3 Immunoexpression. Additionally, LF and QD supplementation downregulated the proliferative, necrotic, fibroblastic changes, eosinophilic intranuclear inclusions, hyaline globules and Mallory-like bodies that were detected histopathologically in the TAA group. In conclusion, LF showed better hepatic protection than QD against TAA-induced hepatotoxicity in rats by inhibiting inflammatory reactions with the improvement of some serum hepatic transaminases, histopathological picture and immunohistochemical markers.


Assuntos
Carbonato de Cálcio , Doença Hepática Induzida por Substâncias e Drogas , Lactose , Quercetina , Humanos , Ratos , Masculino , Animais , Quercetina/farmacologia , Tioacetamida/toxicidade , Antígeno Ki-67/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Flavonoides/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Estresse Oxidativo , Combinação de Medicamentos
2.
J Cell Mol Med ; 28(2): e17993, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847125

RESUMO

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease with multifaceted neuropathological disorders. AD is characterized by intracellular accumulation of phosphorylated tau proteins and extracellular deposition of amyloid beta (Aß). Various protease enzymes, including neprilysin (NEP), are concerned with the degradation and clearance of Aß. Indeed, a defective neuronal clearance pathway due to the dysfunction of degradation enzymes might be a possible mechanism for the accumulation of Aß and subsequent progression of AD neuropathology. NEP is one of the most imperative metalloproteinase enzymes involved in the clearance of Aß. This review aimed to highlight the possible role of NEP inhibitors in AD. The combination of sacubitril and valsartan which is called angiotensin receptor blocker and NEP inhibitor (ARNI) may produce beneficial and deleterious effects on AD neuropathology. NEP inhibitors might increase the risk of AD by the inhibition of Aß clearance, and increase brain bradykinin (BK) and natriuretic peptides (NPs), which augment the pathogenesis of AD. These verdicts come from animal model studies, though they may not be applied to humans. However, clinical studies revealed promising safety findings regarding the use of ARNI. Moreover, NEP inhibition increases various neuroprotective peptides involved in inflammation, glucose homeostasis and nerve conduction. Also, NEP inhibitors may inhibit dipeptidyl peptidase 4 (DPP4) expression, ameliorating insulin and glucagon-like peptide 1 (GLP-1) levels. These findings proposed that NEP inhibitors may have a protective effect against AD development by increasing GLP-1, neuropeptide Y (NPY) and substance P, and deleterious effects by increasing brain BK. Preclinical and clinical studies are recommended in this regard.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neprilisina/metabolismo , Peptídeo 1 Semelhante ao Glucagon
3.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752280

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Receptor trkB , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Receptor trkB/metabolismo , Animais , Glicoproteínas de Membrana/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
4.
J Cell Mol Med ; 28(12): e18495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899551

RESUMO

Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.


Assuntos
Encéfalo , Doença de Parkinson , Sistema Renina-Angiotensina , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Animais , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia
5.
Ann Hematol ; 103(5): 1423-1433, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37405444

RESUMO

Coronavirus disease 19 (COVID-19) is an infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) causing acute systemic disorders and multi-organ damage. ß-thalassemia (ß-T) is an autosomal recessive disorder leading to the development of anemia. ß-T may lead to complications such as immunological disorders, iron overload, oxidative stress, and endocrinopathy. ß-T and associated complications may increase the risk of SARS-CoV-2, as inflammatory disturbances and oxidative stress disorders are linked with COVID-19. Therefore, the objective of the present review was to elucidate the potential link between ß-T and COVID-19 regarding the underlying comorbidities. The present review showed that most of the ß-T patients with COVID-19 revealed mild to moderate clinical features, and ß-T may not be linked with Covid-19 severity. Though patients with transfusion-dependent ß-T (TDT) develop less COVID-19 severity compared to non-transfusion-depend ß-T(NTDT), preclinical and clinical studies are recommended in this regard.


Assuntos
COVID-19 , Sobrecarga de Ferro , Talassemia beta , Humanos , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , COVID-19/complicações , SARS-CoV-2 , Transfusão de Sangue , Sobrecarga de Ferro/etiologia
6.
Neurochem Res ; 49(3): 533-547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38006577

RESUMO

Epilepsy is a neurological disease characterized by repeated seizures. Despite of that the brain-derived neurotrophic factor (BDNF) is implicated in the pathogenesis of epileptogenesis and epilepsy, BDNF may have a neuroprotective effect against epilepsy. Thus, the goal of the present review was to highlight the protective and detrimental roles of BDNF in epilepsy. In this review, we also try to find the relation of BDNF with other signaling pathways and cellular processes including autophagy, mTOR pathway, progranulin (PGN), and α-Synuclein (α-Syn) which negatively and positively regulate BDNF/tyrosine kinase receptor B (TrkB) signaling pathway. Therefore, the assessment of BDNF levels in epilepsy should be related to other neuronal signaling pathways and types of epilepsy in both preclinical and clinical studies. In conclusion, there is a strong controversy concerning the potential role of BDNF in epilepsy. Therefore, preclinical, molecular, and clinical studies are warranted in this regard.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Epilepsia , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Convulsões/metabolismo , Transdução de Sinais/fisiologia , Receptor trkB/metabolismo
7.
Diabetes Obes Metab ; 26(8): 3031-3044, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802993

RESUMO

Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.


Assuntos
Depressão , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Depressão/etiologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Fatores de Risco , Hiperglicemia/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo , Transtorno Depressivo/etiologia , Serotonina/metabolismo
8.
Mar Drugs ; 22(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39330276

RESUMO

Cyclophosphamide (CP) is an anticancer drug that causes infertility disorders. This study was designed to evaluate a nanoformulation of chitosan with an ethanolic extract from Spirulina platensis in terms of its protection against cyclophosphamide-induced ovarian toxicity. Nine groups of female Wistar rats were randomly assigned as follows: 1: control vehicle, 2: chitosan polymer, 3: telmisartan, 4: Spirulina platensis extract, 5: nanoformulation of the Spirulina platensis, and 6: single injection of CP; groups 7, 8, and 9 received the same treatments as those used in groups 3, 4, and 5, respectively, with a single dose of CP (200 mg/kg, I.P). The results displayed that the CP treatment decreased estradiol, progesterone, anti-mullerian hormone, and GSH content, and it downregulated PPAR-γ, Nrf-2, and HO-1 gene expression. In addition, the CP treatment caused an increase in the FSH, LH, and MDA levels. In the same manner, the protein expression of caspase-3, NF-kB, and TNF-α was upregulated in response to the CP treatment, while PPAR-γ was downregulated in comparison with the control. The rats treated with SPNPs exhibited a substantial reduction in the detrimental effects of oxidative stress and inflammation of the ovarian tissue. This study's conclusions showed that SPNPs counteracted the effects of CP, preventing the death of ovarian follicles and restoring the gonadotropin hormone balance and normal ovarian histological appearance.


Assuntos
Quitosana , Ciclofosfamida , Fator 2 Relacionado a NF-E2 , NF-kappa B , Ovário , PPAR gama , Fator de Necrose Tumoral alfa , Animais , Feminino , Ratos , Quitosana/química , Quitosana/farmacologia , Ciclofosfamida/toxicidade , Etanol/química , Heme Oxigenase (Desciclizante)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ovário/efeitos dos fármacos , Ovário/patologia , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Spirulina , Fator de Necrose Tumoral alfa/metabolismo
9.
J Cell Mol Med ; 27(13): 1775-1789, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210624

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Genetic predisposition and immune dysfunction are involved in the pathogenesis of PD. Notably, peripheral inflammatory disorders and neuroinflammation are associated with PD neuropathology. Type 2 diabetes mellitus (T2DM) is associated with inflammatory disorders due to hyperglycaemia-induced oxidative stress and the release of pro-inflammatory cytokines. Particularly, insulin resistance (IR) in T2DM promotes the degeneration of dopaminergic neurons in the substantia nigra (SN). Thus, T2DM-induced inflammatory disorders predispose to the development and progression of PD, and their targeting may reduce PD risk in T2DM. Therefore, this narrative review aims to find the potential link between T2DM and PD by investigating the role of inflammatory signalling pathways, mainly the nuclear factor kappa B (NF-κB) and the nod-like receptor pyrin 3 (NLRP3) inflammasome. NF-κB is implicated in the pathogenesis of T2DM, and activation of NF-κB with induction of neuronal apoptosis was also confirmed in PD patients. Systemic activation of NLRP3 inflammasome promotes the accumulation of α-synuclein and degeneration of dopaminergic neurons in the SN. Increasing α-synuclein in PD patients enhances NLRP3 inflammasome activation and the release of interleukin (IL)-1ß followed by the development of systemic inflammation and neuroinflammation. In conclusion, activation of the NF-κB/NLRP3 inflammasome axis in T2DM patients could be the causal pathway in the development of PD. The inflammatory mechanisms triggered by activated NLRP3 inflammasome lead to pancreatic ß-cell dysfunction and the development of T2DM. Therefore, attenuation of inflammatory changes by inhibiting the NF-κB/NLRP3 inflammasome axis in the early T2DM may reduce future PD risk.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , alfa-Sinucleína , Doença de Parkinson/metabolismo , Pirina , Proteínas NLR , Doenças Neuroinflamatórias , Diabetes Mellitus Tipo 2/complicações
10.
J Cell Mol Med ; 27(24): 3953-3965, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37737447

RESUMO

Epilepsy is a chronic neurological disease characterized by recurrent seizures. Epilepsy is observed as a well-controlled disease by anti-epileptic agents (AEAs) in about 69%. However, 30%-40% of epileptic patients fail to respond to conventional AEAs leading to an increase in the risk of brain structural injury and mortality. Therefore, adding some FDA-approved drugs that have an anti-seizure activity to the anti-epileptic regimen is logical. The anti-diabetic agent metformin has anti-seizure activity. Nevertheless, the underlying mechanism of the anti-seizure activity of metformin was not entirely clarified. Henceforward, the objective of this review was to exemplify the mechanistic role of metformin in epilepsy. Metformin has anti-seizure activity by triggering adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibiting the mechanistic target of rapamycin (mTOR) pathways which are dysregulated in epilepsy. In addition, metformin improves the expression of brain-derived neurotrophic factor (BDNF) which has a neuroprotective effect. Hence, metformin via induction of BDNF can reduce seizure progression and severity. Consequently, increasing neuronal progranulin by metformin may explain the anti-seizure mechanism of metformin. Also, metformin reduces α-synuclein and increases protein phosphatase 2A (PPA2) with modulation of neuroinflammation. In conclusion, metformin might be an adjuvant with AEAs in the management of refractory epilepsy. Preclinical and clinical studies are warranted in this regard.


Assuntos
Epilepsia , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Epilepsia/tratamento farmacológico
11.
Mol Med ; 29(1): 142, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880579

RESUMO

Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.


Assuntos
Epilepsia , Animais , Epilepsia/genética , Epilepsia/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Autofagia , Modelos Animais de Doenças
12.
Cell Mol Neurobiol ; 43(7): 3405-3416, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540395

RESUMO

Hypothyroidism (HPT) HPT could be a risk factor for the development and progression of Alzheimer's disease (AD). In addition, progressive neurodegeneration in AD may affect the metabolism of thyroid hormones (THs) in the brain causing local brain HPT. Hence, the present review aimed to clarify the potential association between HPT and AD. HPT promotes the progression of AD by inducing the production of amyloid beta (Aß) and tau protein phosphorylation with the development of synaptic plasticity and memory dysfunction. Besides, the metabolism of THs is dysregulated in AD due to the accumulation of Aß and tau protein phosphorylation leading to local brain HPT. Additionally, HPT can affect AD neuropathology through various mechanistic pathways including dysregulation of transthyretin, oxidative stress, ER stress, autophagy dysfunction mitochondrial dysfunction, and inhibition of brain-derived neurotrophic factor. Taken together there is a potential link between HPT and AD, as HPT adversely impacts AD neuropathology and the reverse is also true.


Assuntos
Doença de Alzheimer , Hipotireoidismo , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia
13.
Neurochem Res ; 48(11): 3255-3269, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37442896

RESUMO

Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Esclerose Múltipla/metabolismo , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/metabolismo , Bainha de Mielina/metabolismo , Medo
14.
Neurochem Res ; 48(3): 745-766, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36409447

RESUMO

Alzheimer's disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aß) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aß. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aß formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aß formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Leptina , Obesidade Abdominal , Obesidade/complicações , Citocinas
15.
Mol Cell Biochem ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395897

RESUMO

Acute ischemic stroke (AIS) is a focal neurological disorder that accounts for 85% of all stroke types, due to occlusion of cerebral arteries by thrombosis and emboli. AIS is also developed due to cerebral hemodynamic abnormality. AIS is associated with the development of neuroinflammation which increases the severity of AIS. Phosphodiesterase enzyme (PDEs) inhibitors have neuro-restorative and neuroprotective effects against the development of AIS through modulation of the cerebral cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP)/nitric oxide (NO) pathway. PDE5 inhibitors through mitigation of neuroinflammation may decrease the risk of long-term AIS-induced complications. PDE5 inhibitors may affect the hemodynamic properties and coagulation pathway which are associated with thrombotic complications in AIS. PDE5 inhibitors reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. PDE5 inhibitors mainly tadalafil and sildenafil improve clinical outcomes in AIS patients through the regulation of cerebral perfusion and cerebral blood flow (CBF). PDE5 inhibitors reduced thrombomodulin, P-selectin, and tissue plasminogen activator. Herein, PDE5 inhibitors may reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. In conclusion, PDE5 inhibitors may have potential roles in the management of AIS through modulation of CBF, cAMP/cGMP/NO pathway, neuroinflammation, and inflammatory signaling pathways. Preclinical and clinical studies are recommended in this regard.

16.
Neurol Sci ; 44(11): 3781-3794, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37428278

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by deposition of α-synuclein and aggregation of Lewy bodies. Cholesterol is involved with PD neuropathology in bidirectional ways that could be protective or harmful. Thus, the objective of the present review was to verify the potential role of cholesterol in PD neuropathology. Deregulation of ion channels and receptors induced by cholesterol alteration suggests a possible mechanism for the neuroprotective effects of cholesterol against PD development. However, high serum cholesterol level increases PD risk indirectly by 27-hydroxycholesterol which induces oxidative stress, inflammation, and apoptosis. Besides, hypercholesterolemia triggers the accumulation of cholesterol in macrophages and immune cells leading to the release of pro-inflammatory cytokines with progression of neuroinflammation subsequently. Additionally, cholesterol increases aggregation of α-synuclein and induces degeneration of dopaminergic neurons (DN) in the substantia nigra (SN). Hypercholesterolemia may lead to cellular Ca2+ overload causing synaptic and the development of neurodegeneration. In conclusion, cholesterol has bidirectional effects on PD neuropathology and might be protective or harmful.

17.
Metab Brain Dis ; 38(6): 1831-1840, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37335452

RESUMO

Vinpocetine (VPN) is an ethyl apovincaminate that has anti-inflammatory and antioxidant effects by inhibiting the expression of nuclear factor kappa B (NF-κB) and phosphodiesterase enzyme 1 (PDE-1). VPN is used in the management of stroke, dementia, and other neurodegenerative brain diseases. VPN may be effective in treating Parkinson's disease (PD). Therefore, this review aimed to clarify the mechanistic role of VPN in the management of PD. VPN has protective and restorative effects against neuronal injury by reducing neuroinflammation, and improvement of synaptic plasticity and cerebral blood flow. VPN protects dopaminergic neurons by reducing oxidative stress, lipid peroxidation, glutamate neurotoxicity, and regulation of Ca+ 2 overloads. VPN can alleviate PD neuropathology through its anti-inflammatory, antioxidant, antiapoptotic and neurogenic effects. VPN through inhibition of PDE1 improves cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP) signaling in the dopaminergic neurons of the substantia nigra (SN). VPN improves PD neuropathology through PDE1 inhibition with a subsequent increase of the cAMP/cGMP signaling pathway. Therefore, increasing cAMP leads to antioxidant effects, while augmentation of cGMP by VPN leads to anti-inflammatory effects which reduced neurotoxicity and development of motor severity in PD. In conclusion, this review indicated that VPN could be effective in the management of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Alcaloides de Vinca , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Antioxidantes , Alcaloides de Vinca/farmacologia , Alcaloides de Vinca/uso terapêutico , Neurônios Dopaminérgicos
18.
Inflammopharmacology ; 31(1): 221-230, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36418599

RESUMO

Dementia is considered a clinical syndrome characterized by cognitive dysfunction and memory loss. Alzheimer's disease (AD) is the most common type of dementia. AD is linked with the turbulence of diverse neurotransmitters including gamma-aminobutyric acid (GABA). Notably, GABA in the brain and cerebrospinal fluid was reduced in AD. Thus, allosteric modulation of the GABA effect by benzodiazepines (BDZs) may improve the clinical outcomes of AD patients. Therefore, the objective of the present review was to reveal the possible role of BDZs on the pathogenesis and clinical outcomes in AD patients. Though BDZs may adversely affect cognitive functions mainly in elderly patients, herein it was postulated that BDZs may have beneficial, neutral, or detrimental effects in AD. Taken together, there is strong controversy regarding the use of BDZs and the risk for the development of AD. Therefore, experimental, preclinical and clinical studies are critical to determine the potential protective or detrimental effects of BDZs on AD neuropathology.


Assuntos
Doença de Alzheimer , Benzodiazepinas , Humanos , Idoso , Benzodiazepinas/farmacologia , Doença de Alzheimer/patologia , Ácido gama-Aminobutírico , Encéfalo , Cognição
19.
Inflammopharmacology ; 31(3): 1107-1115, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36849855

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by extracellular deposition of amyloid beta (Aß) leading to cognitive decline. Evidence from epidemiological studies has shown the association between type 2 diabetes mellitus (T2DM) and the development of AD. T2DM and peripheral insulin resistance (IR) augment the risk of AD with the development of brain IR with inhibition of neuronal insulin receptors. These changes impair clearance of Aß, increase secretion of Aß1-42, reduce brain glucose metabolism, and abnormal deposition of Aß plaques. Insulin-sensitizing drug metformin inhibits aggregation of Aß by increasing the activity of the insulin-degrading enzyme (IDE) and neprilysin (NEP) levels. Additionally, different studies raised conflicting evidence concerning long-term metformin therapy in T2DM patients, as it may increase the risk of AD or it may prevent the progression of AD. Therefore, the objective of this review was to clarify the beneficial and detrimental effects of long-term metformin therapy in T2DM patients and risk of AD. Evidence from clinical trial studies revealed the little effect of metformin on AD. Various animal studies showed that metformin increases Aß formation by activation of amyloid precursor protein (APP)-cleaving enzymes with the generation of insoluble tau species. Of note, the metformin effect on cognitive function relative to AD pathogenesis is mostly assessed in animal model studies. The duration of metformin therapy was short in most animal studies, this finding cannot apply to the long-term duration of metformin in humans. Therefore, large-scale prospective and comparative studies involving long-term metformin therapy in both diabetic and non-diabetic patients are required to exclude the effect of T2DM-induced AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Doenças Neurodegenerativas , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estudos Prospectivos , Insulina/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças
20.
Inflammopharmacology ; 31(2): 673-688, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36961665

RESUMO

Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the  modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doenças Neuroinflamatórias , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA