Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 83(18): 3360-3376.e11, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37699397

RESUMO

Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.


Assuntos
Senescência Celular , Longevidade , Longevidade/genética , Polimerização , Aminoácidos
2.
J Biol Chem ; 299(5): 104571, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871754

RESUMO

Metastasis-suppressor 1 (MTSS1) is a membrane-interacting scaffolding protein that regulates the integrity of epithelial cell-cell junctions and functions as a tumor suppressor in a wide range of carcinomas. MTSS1 binds phosphoinositide-rich membranes through its I-BAR domain and is capable of sensing and generating negative membrane curvature in vitro. However, the mechanisms by which MTSS1 localizes to intercellular junctions in epithelial cells and contributes to their integrity and maintenance have remained elusive. By carrying out EM and live-cell imaging on cultured Madin-Darby canine kidney cell monolayers, we provide evidence that adherens junctions of epithelial cells harbor lamellipodia-like, dynamic actin-driven membrane folds, which exhibit high negative membrane curvature at their distal edges. BioID proteomics and imaging experiments demonstrated that MTSS1 associates with an Arp2/3 complex activator, the WAVE-2 complex, in dynamic actin-rich protrusions at cell-cell junctions. Inhibition of Arp2/3 or WAVE-2 suppressed actin filament assembly at adherens junctions, decreased the dynamics of junctional membrane protrusions, and led to defects in epithelial integrity. Together, these results support a model in which membrane-associated MTSS1, together with the WAVE-2 and Arp2/3 complexes, promotes the formation of dynamic lamellipodia-like actin protrusions that contribute to the integrity of cell-cell junctions in epithelial monolayers.


Assuntos
Actinas , Proteínas dos Microfilamentos , Pseudópodes , Animais , Cães , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Pseudópodes/metabolismo , Proteínas dos Microfilamentos/metabolismo
3.
Exp Cell Res ; 397(2): 112383, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212148

RESUMO

Metabolism feeds growth. Accordingly, metabolism is regulated by nutrient-sensing pathways that converge growth promoting signals into biosynthesis by regulating the activity of metabolic enzymes. When the environment does not support growth, organisms invest in survival. For cells, this entails transitioning into a dormant, quiescent state (G0). In dormancy, the activity of biosynthetic pathways is dampened, and catabolic metabolism and stress tolerance pathways are activated. Recent work in yeast has demonstrated that dormancy is associated with alterations in the physicochemical properties of the cytoplasm, including changes in pH, viscosity and macromolecular crowding. Accompanying these changes, numerous metabolic enzymes transition from soluble to polymerized assemblies. These large-scale self-assemblies are dynamic and depolymerize when cells resume growth. Here we review how enzyme polymerization enables metabolic plasticity by tuning carbohydrate, nucleic acid, amino acid and lipid metabolic pathways, with particular focus on its potential adaptive value in cellular dormancy.


Assuntos
Fenômenos Fisiológicos Celulares , Doença , Enzimas/química , Enzimas/metabolismo , Redes e Vias Metabólicas , Animais , Humanos , Polimerização
4.
Physiol Rev ; 90(1): 259-89, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20086078

RESUMO

The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.


Assuntos
Actinas/fisiologia , Membrana Celular/fisiologia , Citoesqueleto/fisiologia , Fosfatidilinositóis/fisiologia , Animais , GTP Fosfo-Hidrolases/fisiologia , Humanos , Neoplasias/fisiopatologia , Transdução de Sinais/fisiologia
6.
Curr Genet ; 62(4): 711-724, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27032776

RESUMO

Coalescence of proteins into different types of intracellular bodies has surfaced as a widespread adaptive mechanism to re-organize cells and cellular functions in response to specific cues. These structures, composed of proteins or protein-mRNA-complexes, regulate cellular processes through modulating enzymatic activities, gene expression or shielding macromolecules from damage. Accordingly, such bodies are associated with a wide-range of processes, including meiosis, memory-encoding, host-pathogen interactions, cancer, stress responses, as well as protein quality control, DNA replication stress and aneuploidy. Importantly, these distinct coalescence responses are controlled, and in many cases regulated by chaperone proteins. While cells can tolerate and proficiently coordinate numerous distinct types of protein bodies, some of them are also intimately linked to diseases or the adverse effects of aging. Several protein bodies that differ in composition, packing, dynamics, size, and localization were originally discovered in budding yeast. Here, we provide a concise and comparative review of their nature and nomenclature.


Assuntos
Adaptação Fisiológica , Agregados Proteicos , Proteínas/metabolismo , Envelhecimento/metabolismo , Grânulos Citoplasmáticos , Expressão Gênica , Humanos , Príons/química , Príons/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Leveduras/genética , Leveduras/metabolismo
8.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37333256

RESUMO

The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the Multicellularity Long Term Evolution Experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by downregulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.

9.
Sci Adv ; 10(10): eadn2706, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457507

RESUMO

The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.


Assuntos
Evolução Biológica , Proteínas de Choque Térmico HSP90 , Proteínas de Choque Térmico HSP90/metabolismo , Mitose , Dobramento de Proteína , Fenótipo
10.
J Cell Sci ; 124(Pt 8): 1245-55, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406566

RESUMO

MIM/MTSS1 is a tissue-specific regulator of plasma membrane dynamics, whose altered expression levels have been linked to cancer metastasis. MIM deforms phosphoinositide-rich membranes through its I-BAR domain and interacts with actin monomers through its WH2 domain. Recent work proposed that MIM also potentiates Sonic hedgehog (Shh)-induced gene expression. Here, we generated MIM mutant mice and found that full-length MIM protein is dispensable for embryonic development. However, MIM-deficient mice displayed a severe urinary concentration defect caused by compromised integrity of kidney epithelia intercellular junctions, which led to bone abnormalities and end-stage renal failure. In cultured kidney epithelial (MDCK) cells, MIM displayed dynamic localization to adherens junctions, where it promoted Arp2/3-mediated actin filament assembly. This activity was dependent on the ability of MIM to interact with both membranes and actin monomers. Furthermore, results from the mouse model and cell culture experiments suggest that full-length MIM is not crucial for Shh signaling, at least during embryogenesis. Collectively, these data demonstrate that MIM modulates interplay between the actin cytoskeleton and plasma membrane to promote the maintenance of intercellular contacts in kidney epithelia.


Assuntos
Actinas/metabolismo , Epitélio/metabolismo , Junções Intercelulares/metabolismo , Rim/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cães , Humanos , Junções Intercelulares/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Ligação Proteica
11.
EMBO Rep ; 12(11): 1118-26, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21997296

RESUMO

Septins form a subfamily of highly related GTP-binding proteins conserved from eukaryotic protists to mammals. In most cases, septins function in close association with cell membranes and the actin and microtubule cytoskeleton to regulate a wide variety of key cellular processes. Further underscoring their importance, septin abnormalities are associated with several human diseases. Remarkably, septins have the ability to polymerize into assemblies of different sizes in vitro and in vivo. In cells, these structures act in the formation of diffusion barriers and scaffolds that maintain subcellular polarity. Here, we focus on the emerging roles of vertebrate septins in ciliogenesis, neurogenesis, tumorigenesis and host-pathogen interactions, and discuss whether unifying themes underlie the molecular function of septins in health and disease.


Assuntos
Septinas/metabolismo , Animais , Movimento Celular , Sistema Nervoso Central/metabolismo , Cílios/metabolismo , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/microbiologia , Humanos , Invasividade Neoplásica
12.
J Cell Biol ; 176(7): 953-64, 2007 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17371834

RESUMO

The actin cytoskeleton plays a fundamental role in various motile and morphogenetic processes involving membrane dynamics. We show that actin-binding proteins MIM (missing-in-metastasis) and IRSp53 directly bind PI(4,5)P(2)-rich membranes and deform them into tubular structures. This activity resides in the N-terminal IRSp53/MIM domain (IMD) of these proteins, which is structurally related to membrane-tubulating BAR (Bin/amphiphysin/Rvs) domains. We found that because of a difference in the geometry of the PI(4,5)P(2)-binding site, IMDs induce a membrane curvature opposite that of BAR domains and deform membranes by binding to the interior of the tubule. This explains why IMD proteins induce plasma membrane protrusions rather than invaginations. We also provide evidence that the membrane-deforming activity of IMDs, instead of the previously proposed F-actin-bundling or GTPase-binding activities, is critical for the induction of the filopodia/microspikes in cultured mammalian cells. Together, these data reveal that interplay between actin dynamics and a novel membrane-deformation activity promotes cell motility and morphogenesis.


Assuntos
Actinas/metabolismo , Extensões da Superfície Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Pseudópodes/metabolismo , Actinas/ultraestrutura , Sítios de Ligação/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Pseudópodes/ultraestrutura
13.
Curr Biol ; 32(5): 963-974.e7, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35085498

RESUMO

Prion-like proteins are involved in many aspects of cellular physiology, including cellular memory. In response to deceptive courtship, budding yeast escapes pheromone-induced cell-cycle arrest through the coalescence of the G1/S inhibitor Whi3 into a dominant, inactive super-assembly. Whi3 is a mnemon (Whi3mnem), a protein that conformational change maintains as a trait in the mother cell but is not inherited by the daughter cells. How the maintenance and asymmetric inheritance of Whi3mnem are achieved is unknown. Here, we report that Whi3mnem is closely associated with endoplasmic reticulum (ER) membranes and is retained in the mother cell by the lateral diffusion barriers present at the bud neck. Strikingly, barrier defects made Whi3mnem propagate in a mitotically stable, prion-like manner. The amyloid-forming glutamine-rich domain of Whi3 was required for both mnemon and prion-like behaviors. Thus, we propose that Whi3mnem is in a self-templating state, lending temporal maintenance of memory, whereas its association with the compartmentalized membranes of the ER prevents infectious propagation to the daughter cells. These results suggest that confined self-templating super-assembly is a powerful mechanism for the long-term encoding of information in a spatially defined manner. Yeast courtship may provide insights on how individual synapses become potentiated in neuronal memory.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Corte , Retículo Endoplasmático/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células-Tronco/metabolismo
14.
Aging Cell ; 21(7): e13645, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35656861

RESUMO

Most neurodegenerative diseases such as Alzheimer's disease are proteinopathies linked to the toxicity of amyloid oligomers. Treatments to delay or cure these diseases are lacking. Using budding yeast, we report that the natural lipid tripentadecanoin induces expression of the nitric oxide oxidoreductase Yhb1 to prevent the formation of protein aggregates during aging and extends replicative lifespan. In mammals, tripentadecanoin induces expression of the Yhb1 orthologue, neuroglobin, to protect neurons against amyloid toxicity. Tripentadecanoin also rescues photoreceptors in a mouse model of retinal degeneration and retinal ganglion cells in a Rhesus monkey model of optic atrophy. Together, we propose that tripentadecanoin affects p-bodies to induce neuroglobin expression and offers a potential treatment for proteinopathies and retinal neurodegeneration.


Assuntos
Amiloide , Lipídeos , Agregação Patológica de Proteínas , Animais , Camundongos , Doença de Alzheimer , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Dioxigenases , Hemeproteínas , Lipídeos/farmacologia , Mamíferos , Neuroglobina/efeitos dos fármacos , Neuroglobina/metabolismo , Corpos de Processamento/efeitos dos fármacos , Corpos de Processamento/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Células Ganglionares da Retina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
15.
Prion ; 11(3): 162-173, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28574744

RESUMO

Organisms rely on correctly folded proteins to carry out essential functions. Protein quality control factors guard proteostasis and prevent protein misfolding. When quality control fails and in response to diverse stresses, many proteins start to accumulate at specific deposit sites that maintain cellular organization and protect the functionality of coalescing proteins. These transitions involve dedicated proteins that promote coalescence and are facilitated by endo-membranes and cytoskeletal platforms. Moreover, several proteins make use of weak multivalent interactions or conformational templating to drive the formation of large-scale assemblies. Formation of such assemblies is often associated with a change in biochemical activity that can be used by cells to execute biochemical decisions in a localized manner during development and adaption. Since all assembly types impact cell physiology, their localization and dynamics need to be tightly regulated. Interestingly, at least some of the regulatory mechanisms are shared by functional membrane-less organelles and assemblies of terminally aggregated proteins. Furthermore, constituents of functional assemblies can aggregate and become non-functional during aging. Here we present the current knowledge as to how coalescing protein assemblies are spatially organized in cells and we postulate that failures in their spatial confinement might underscore certain aspects of aging and neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Complexos Multiproteicos/química , Proteínas/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
16.
Curr Biol ; 27(6): 773-783, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28262489

RESUMO

In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane anchoring and the compartmentalization of the endoplasmic reticulum (ER) membrane confine protein deposit formation to aging cells during division. Supporting the idea that the age-dependent deposit forms through coalescence of smaller aggregates, two deposits rapidly merged when placed in the same cell by cell-cell fusion. The deposits localized to the ER membrane, primarily to the nuclear envelope (NE). Strikingly, weakening the diffusion barriers that separate the ER membrane into mother and bud compartments caused premature formation of deposits in the daughter cells. Detachment of the Hsp40 protein Ydj1 from the ER membrane elicited a similar phenotype, suggesting that the diffusion barriers and farnesylated Ydj1 functioned together to confine protein deposit formation to mother cells during division. Accordingly, fluorescence correlation spectroscopy measurements in dividing cells indicated that a slow-diffusing, possibly client-bound Ydj1 fraction was asymmetrically enriched in the mother compartment. This asymmetric distribution depended on Ydj1 farnesylation and intact diffusion barriers. Taking these findings together, we propose that ER-anchored Ydj1 binds deposit precursors and prevents them from spreading into daughter cells during division by subjecting them to the ER diffusion barriers. This ensures that the coalescence of precursors into a single deposit is restricted to the aging lineage.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética
17.
Commun Integr Biol ; 9(3): e1125053, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27489575

RESUMO

The post-synaptic spines of neuronal dendrites are highly elaborate membrane protrusions. Their anatomy, stability and density are intimately linked to cognitive performance. The morphological transitions of spines are powered by coordinated polymerization of actin filaments against the plasma membrane, but how the membrane-associated polymerization is spatially and temporally regulated has remained ill defined. Here, we discuss our recent findings showing that dendritic spines can be initiated by direct membrane bending by the I-BAR protein MIM/Mtss1. This lipid phosphatidylinositol (PI(4,5)P2) signaling-activated membrane bending coordinated spatial actin assembly and promoted spine formation. From recent advances, we formulate a general model to discuss how spatially concentrated protein-lipid microdomains formed by multivalent interactions between lipids and actin/membrane regulatory proteins might launch cell protrusions.

18.
Elife ; 42015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26544680

RESUMO

Differentiation of cellular lineages is facilitated by asymmetric segregation of fate determinants between dividing cells. In budding yeast, various aging factors segregate to the aging (mother)-lineage, with poorly understood consequences. In this study, we show that yeast mother cells form a protein aggregate during early replicative aging that is maintained as a single, asymmetrically inherited deposit over the remaining lifespan. Surprisingly, deposit formation was not associated with stress or general decline in proteostasis. Rather, the deposit-containing cells displayed enhanced degradation of cytosolic proteasome substrates and unimpaired clearance of stress-induced protein aggregates. Deposit formation was dependent on Hsp42, which collected non-random client proteins of the Hsp104/Hsp70-refolding machinery, including the prion Sup35. Importantly, loss of Hsp42 resulted in symmetric inheritance of its constituents and prolonged the lifespan of the mother cell. Together, these data suggest that protein aggregation is an early aging-associated differentiation event in yeast, having a two-faceted role in organismal fitness.


Assuntos
Senescência Celular , Agregados Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo
19.
Dev Cell ; 33(6): 644-59, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26051541

RESUMO

Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis.


Assuntos
Espinhas Dendríticas/fisiologia , Proteínas dos Microfilamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Neurogênese/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Comportamento Animal/fisiologia , Cerebelo/metabolismo , Espinhas Dendríticas/ultraestrutura , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Modelos Neurológicos , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Neurogênese/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinapses/fisiologia , Sinapses/ultraestrutura , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Distribuição Tecidual
20.
Nat Commun ; 5: 3465, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24632752

RESUMO

In cancers with a highly altered genome, distinct genetic alterations drive subsets rather than the majority of individual tumours. Here we use a sequential search across human tumour samples for transcript outlier data points with associated gene copy number variations that correlate with patient's survival to identify genes with pro-invasive functionality. Employing loss and gain of function approaches in vitro and in vivo, we show that one such gene, MTSS1, promotes the ability of melanocytic cells to metastasize and engages actin dynamics via Rho-GTPases and cofilin in this process. Indeed, high MTSS1 expression defines a subgroup of primary melanomas with unfavourable prognosis. These data underscore the biological, clinical and potential therapeutic implications of molecular subsets within genetically complex cancers.


Assuntos
Melanoma/metabolismo , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos Nus , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA