Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biopreserv Biobank ; 22(4): 312-320, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38265832

RESUMO

Ozone has been used as a therapy tool in medical science for conditions such as ulcers, peritonitis, wounds, and mostly joint problems. Ozone therapy strengthens the resistance to infections by kick-starting antioxidant, anti-inflammatory, and immune modulation systems. Ozone creates a defensive response against oxidative stress in membranes and protects metabolism against reactive oxygen species (ROS). Sperm membranes are one of ROS's main targets; therefore, the cells' cryopreservation process requires more defensive elements for better results. This study aimed to investigate the protective effect of nano-ozone solution (NOS) on ram sperm cryopreservation and the influence of the process on various sperm parameters for post-thaw (0 hour) and postincubation (6 hours) time points. Samples were collected from six Merino rams in the breeding season by electroejaculation five times at 3-day intervals. The study was conducted by cryopreservation of the samples using a tris citric acid-egg yolk-based extender. The samples were subjected to freezing in control and NOS (0.5, 1, and 2 µg/mL nano-ozone supplemented). Post-thaw motility, hypo-osmotic swelling test, acrosome (fluorescein isothiocyanate-conjugated Pisum sativum agglutinin [PSA-FITC]), and DNA integrities (terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]) were evaluated with a phase-contrast microscope. Mitochondrial membrane potential (MMP) assessments were conducted by JC1-PI dual staining with a flow cytometer. Malondialdehyde and glutathione (GSH) levels were measured by a spectrophotometer. Sperm kinematics were investigated by a computer-assisted sperm analyzer (CASA) at the post-thaw time point. Compared with the control, relatively low doses of NOS (0.5 and 1 µg/mL) yielded better results in many parameters (motility, membrane and acrosomal integrities, MMP, various sperm kinematics, and GSH levels) (p < 0.05). The addition of low ozone doses to cryopreservation extenders improved the results compared with the control group at post-thaw and postincubation time points. Despite the valuable potential of nano-ozone supplementation in ram sperm cryopreservation, this subject requires further investigations with fertility trials soon.


Assuntos
Criopreservação , Citometria de Fluxo , Ozônio , Preservação do Sêmen , Espermatozoides , Masculino , Animais , Criopreservação/métodos , Ovinos , Ozônio/farmacologia , Espermatozoides/efeitos dos fármacos , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides/efeitos dos fármacos , Crioprotetores/farmacologia , Acrossomo/efeitos dos fármacos
2.
Int J Nanomedicine ; 17: 351-379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115773

RESUMO

PURPOSE: SARS-CoV-2-infected individuals may be asymptomatic, and therefore, the virus is highly contagious. We aimed to develop an agent to control viral replication in the upper respiratory tract and to prevent progression of the disease into the lower airways as well as inter-individual transmission. For this purpose, we investigated the antibacterial and antiviral activities of our novel nanobubble ozonated hyaluronic acid-decorated liposomal (NOHAL) solution, developed by using nanotechnology. METHODS: The MIC levels of NOHAL solution were determined on blood agar cultures of Staphylococcus aureus (ATCC 6538), Streptococcus pneumoniae (ATCC 49619) and Escherichia coli (ATCC 25922). The in vitro anti-viral activity of NOHAL solution was studied using recombinant SARS-CoV-2 copies of the original virus, grown in Vero cells generated by reverse genetic technology. Human primary lung epithelial cells obtained by bronchoscopy or lung resection were used for cell viability tests using flow cytometry analysis. The cytotoxicity testing was performed using the BALB/c 3T3 (CCL-163) cell line. Skin, oral, nasal and ocular irritation tests were performed using New Zealand albino rabbits, Syrian hamsters, BALB c mice and New Zealand albino rabbits of both sexes. RESULTS: Bacterial growth was prevented by NOHAL solution in a time-/dose-dependent manner. In vivo or in vitro experiments did not show any toxicity of NOHAL solution. No cytotoxicity was recorded on cell viability. No skin, oral, nasal or ocular toxicities were recorded. In addition, in a SARS-CoV-2 mouse infection model, NOHAL solution diminished the viral RNA levels effectively in nasopharyngeal and lung samples after its prophylactic intranasal application. CONCLUSION: NOHAL solution has the potential to reduce or prevent the spread of SARS-CoV-2 through the nose and/or oral cavity. The clinical efficacy of this solution needs to be tested in order to determine its efficacy in the early phase of COVID-19.


Assuntos
COVID-19 , Ozônio , Animais , Antibacterianos/farmacologia , Chlorocebus aethiops , Cricetinae , Feminino , Humanos , Ácido Hialurônico , Lipossomos , Masculino , Camundongos , Coelhos , SARS-CoV-2 , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA