Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell ; 142(2): 230-42, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655466

RESUMO

Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres.


Assuntos
Antígenos de Neoplasias/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Senescência Celular , Dano ao DNA , Exodesoxirribonucleases , Humanos , Estrutura Terciária de Proteína
2.
J Radiol Prot ; 33(3): 589-603, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23803528

RESUMO

The fourth workshop of the Multidisciplinary European Low Dose Initiative (MELODI) was organised by STUK-Radiation and Nuclear Safety Authority of Finland. It took place from 12 to 14 September 2012 in Helsinki, Finland. The meeting was attended by 179 scientists and professionals engaged in radiation research and radiation protection. We summarise the major scientific findings of the workshop and the recommendations for updating the MELODI Strategic Research Agenda and Road Map for future low dose research activities.


Assuntos
Doses de Radiação , Lesões por Radiação/epidemiologia , Proteção Radiológica/normas , Relação Dose-Resposta à Radiação , Europa (Continente)/epidemiologia , Humanos , Lesões por Radiação/genética , Proteção Radiológica/métodos , Projetos de Pesquisa/normas , Medição de Risco
3.
NPJ Microgravity ; 9(1): 8, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707520

RESUMO

Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon's orbit, return to the Moon's surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit.

4.
J Cell Physiol ; 227(5): 1932-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21732364

RESUMO

To assess why during in vitro aging of fibroblasts the maintenance of chromosomal stability is effective or occasionally fails, a detailed cytogenetic analysis was performed in normal human IMR-90 fetal lung fibroblasts. The onset of senescence was inferred from proliferation activity, expression pattern of cell cycle regulating proteins, activity of ß-galactosidase, and morphological features. Over the period of proliferation, a moderate increase of non-transmissible structural chromosomal aberrations was observed. In addition, using fluorescence in situ hybridization (mFISH and mBAND) techniques, we detected clonally expanding translocations in up to 70% of the analyzed metaphases, all involving one homolog of chromosome 9 as an acceptor. Notably, chromosomes are randomly involved as donor-chromosomes of the translocated terminal acentric fragments. These fragments result from duplication because the donor chromosomes are apparently unchanged. Interstitial telomeric signals were detectable at fusion sites, most likely belonging to chromosome 9. Quantitative fluorescence in situ hybridization (QFISH) detecting telomere sequences, followed by mFISH technique revealed that already in young cells the respective telomeres of one chromosome 9 were particularly short. For the first time, we have observed dysfunctional telomeres of one specific chromosome in normal human cells that have been stabilized by duplicated terminal sequences.


Assuntos
Senescência Celular/fisiologia , Duplicação Cromossômica , Cromossomos Humanos/metabolismo , Telômero/metabolismo , Linhagem Celular , Análise Citogenética , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Hibridização in Situ Fluorescente/métodos
5.
Chromosoma ; 120(3): 309-19, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21359527

RESUMO

Interstitial telomeric sequences (ITSs) in hamster cells are hot spots for spontaneous and induced chromosome aberrations (CAs). Most data on ITS instability to date have been obtained in DNA repair-proficient cells. The classical non-homologous end joining repair pathway (C-NHEJ), which is the principal double strand break (DSB) repair mechanism in mammalian cells, is thought to restore the morphologically correct chromosome structure. The production of CAs thus involves DNA-PKcs-independent repair pathways. In our current study, we investigated the participation of DNA-PKcs from the C-NHEJ pathway in the repair of spontaneous or radiation-induced DSBs in ITSs using wild-type and DNA-PKcs mutant Chinese hamster ovary cells. Our data demonstrate that DNA-PKcs stabilizes spontaneous DSBs within ITSs from the chromosome 9 long arm, leading to the formation of terminal deletions. In addition, we show that DNA-PKcs-dependent C-NHEJ is employed following radiation-induced DSBs in other ITSs and restores morphologically correct chromosomes, whereas DNA-PKcs independent mechanisms co-exist in DNA-PKcs proficient cells leading to an excess of CAs within ITSs.


Assuntos
Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Telômero/genética , Animais , Células CHO , Cricetinae , Cricetulus
6.
J Cell Sci ; 123(Pt 23): 4063-75, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21084563

RESUMO

The organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis.


Assuntos
Posicionamento Cromossômico , Cromossomos Humanos/genética , Linhagem Celular Tumoral , Nucléolo Celular/genética , Humanos , Hibridização in Situ Fluorescente
7.
Mutat Res ; 751(2): 258-286, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22677531

RESUMO

Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100mSv and/or 0.1mSvmin(-1)) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of potential confounding factors, are also essential.


Assuntos
Biomarcadores , Estudos Epidemiológicos , Radiação Ionizante , Células Cultivadas , Aberrações Cromossômicas , Dano ao DNA , Epigênese Genética , Humanos , Metabolômica , Epidemiologia Molecular , Espécies Reativas de Oxigênio
8.
Eur Radiol Exp ; 6(1): 12, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35237875

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) is currently considered a safe imaging technique because, unlike computed tomography, MRI does not expose patients to ionising radiation. However, conflicting literature reports possible genotoxic effects of MRI. We herein examine the chromosomal effects of repeated MRI scans by performing a longitudinal follow-up of chromosomal integrity in volunteers. METHODS: This ethically approved study was performed on 13 healthy volunteers (mean age 33 years) exposed to up to 26 3-T MRI sessions. The characterisation of chromosome damage in peripheral blood lymphocytes was performed using the gold-standard biodosimetry technique augmented with telomere and centromere staining. RESULTS: Cytogenetic analysis showed no detectable effect after a single MRI scan. However, repeated MRI sessions (from 10 to 20 scans) were associated with a small but significant increase in chromosomal breaks with the accumulation of cells with chromosomal terminal deletions with a coefficient of 9.5% (95% confidence interval 6.5-12.5%) per MRI (p < 0.001). Additional exposure did not result in any further increase. This plateauing of damage suggests lymphocyte turnover. Additionally, there was no significant induction of dicentric chromosomes, in contrast to what is observed following exposure to ionising radiation. CONCLUSIONS: Our study showed that MRI can affect chromosomal integrity. However, the amount of damage per cell might be so low that no chromosomal rearrangement by fusion of two deoxyribonucleic breaks is induced, unlike that seen after exposure to computed tomography. This study confirms that MRI is a safe imaging technique.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adulto , Cromossomos , Voluntários Saudáveis , Humanos , Tomografia Computadorizada por Raios X
9.
Environ Int ; 146: 106213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276315

RESUMO

In 2011, the International Commission on Radiological Protection (ICRP) recommended reducing the occupational equivalent dose limit for the lens of the eye from 150 mSv/year to 20 mSv/year, averaged over five years, with no single year exceeding 50 mSv. With this recommendation, several important assumptions were made, such as lack of dose rate effect, classification of cataracts as a tissue reaction with a dose threshold at 0.5 Gy, and progression of minor opacities into vision-impairing cataracts. However, although new dose thresholds and occupational dose limits have been set for radiation-induced cataract, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological and mechanistic evidence at doses under 2 Gy. Since the release of the 2011 ICRP statement, the Multidisciplinary European Low Dose Initiative (MELODI) supported in April 2019 a scientific workshop that aimed to review epidemiological, clinical and biological evidence for radiation-induced cataracts. The purpose of this article is to present and discuss recent related epidemiological and clinical studies, ophthalmic examination techniques, biological and mechanistic knowledge, and to identify research gaps, towards the implementation of a research strategy for future studies on radiation-induced lens opacities. The authors recommend particularly to study the effect of ionizing radiation on the lens in the context of the wider, systemic effects, including in the retina, brain and other organs, and as such cataract is recommended to be studied as part of larger scale programs focused on multiple radiation health effects.


Assuntos
Catarata , Cristalino , Exposição Ocupacional , Lesões por Radiação , Catarata/epidemiologia , Catarata/etiologia , Humanos , Doses de Radiação , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Radiação Ionizante
10.
Int J Radiat Biol ; 97(7): 888-905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970757

RESUMO

PURPOSE: In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS: Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS: This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS: Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.


Assuntos
Laboratórios , Radiometria , Aberrações Cromossômicas/efeitos da radiação , Humanos , Exposição à Radiação , Reprodutibilidade dos Testes
11.
Int J Radiat Biol ; 97(9): 1181-1198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138666

RESUMO

PURPOSE: Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS: For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS: The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS: The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.


Assuntos
Cromossomos Humanos/genética , Cromossomos Humanos/efeitos da radiação , Radiometria , Aberrações Cromossômicas/efeitos da radiação , Humanos , Exposição à Radiação/análise , Estudos Retrospectivos
12.
Curr Opin Genet Dev ; 60: 92-98, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32199233

RESUMO

Telomeres are composed of DNA repeat sequences at the ends of chromosomes that recruit a multitude of proteins to form a complex loop structure at each extremity. The integrity of this structure is critical and correct conformation of the loop is essential for the protection of chromosome ends from DDR signaling. The properties of telomere composition and synthesis result in telomere shortening at each cell division, programming cellular lifespan by driving aged cells towards death. Indeed, many external factors, such as cellular stress, trigger cell-cycle dysfunction and, in some cases, enable the survival of cells with dysfunctionally short telomeres. Destabilized loops at chromosome ends can then lead to dramatic consequences, via a butterfly effect such as multiple chromosomal fusions and rearrangements causing large chromosomal deletions, XXL-LOH (loss of heterozygoty due to very large chromosome deletions, up to whole chromosome arm), the expression of recessive mutations, and potential cell transformation.


Assuntos
Transformação Celular Neoplásica/patologia , Instabilidade Cromossômica , Neoplasias/genética , Neoplasias/patologia , Homeostase do Telômero , Telômero , Transformação Celular Neoplásica/genética , Humanos
13.
Int J Radiat Biol ; 96(2): 214-219, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622124

RESUMO

Purpose: The premature chromosome condensation (PCC) technique is used to study exposure to external radiation through the determination of chromosome fragments observed in interphase cells. The presence of large telomeric signals in CHO cells interferes with the detection of PCC fragments and the identification of dicentric chromosomes. We present an improved method for the fusion of G0-lymphocytes with mitotic Akodon cells (few chromosomes and weakly-staining telomeric sequences) to induce PCC in combination with rapid quantification of dicentric chromosomes and centric rings as an alternative to the classical CHO cell fusion technique.Materials and methods: Whole blood from three healthy volunteers was γ-irradiated with 0, 2, or 4 Gy. Following a 24 h incubation post-exposure at 37 °C, chromosome spreads of isolated lymphocytes were prepared by standard PCC procedures using mitotic Akodon cells.Results: The percentage of scorable fusions, measured by telomere/centromere (T/C) staining, for Akodon-induced PCC was higher than that for CHO-induced PCC, irrespective of radiation exposure. Importantly, both techniques gave the same result for biodosimetry evaluation.Conclusion: The mitotic Akodon cell-induced PCC fusion assay, in combination with the scoring of dicentric chromosomes and rings by T/C staining of G0-lymphocytes is a suitable alternative for fast and reliable dose estimation after accidental radiation exposure.


Assuntos
Cromossomos/efeitos da radiação , Cromossomos/ultraestrutura , Linfócitos/citologia , Mitose , Adulto , Animais , Células CHO , Centrômero/efeitos da radiação , Centrômero/ultraestrutura , Cricetinae , Cricetulus , Raios gama , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Radiometria , Roedores , Telômero/efeitos da radiação , Telômero/ultraestrutura , Adulto Jovem
14.
Int J Radiat Biol ; 96(3): 324-339, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31539290

RESUMO

Purpose: To summarize existing knowledge and to understand individual response to radiation exposure, the MELODI Association together with CONCERT European Joint Programme has organized a workshop in March 2018 on radiation sensitivity and susceptibility.Methods: The workshop reviewed the current evidence on this matter, to inform the MELODI Strategic Research Agenda (SRA), to determine social and scientific needs and to come up with recommendations for suitable and feasible future research initiatives to be taken for the benefit of an improved medical diagnosis and treatment as well as for radiation protection.Results: The present paper gives an overview of the current evidence in this field, including potential effect modifiers such as age, gender, genetic profile, and health status of the exposed population, based on clinical and epidemiological observations.Conclusion: The authors conclude with the following recommendations for the way forward in radiation research: (a) there is need for large (prospective) cohort studies; (b) build upon existing radiation research cohorts; (c) use data from well-defined cohorts with good exposure assessment and biological material already collected; (d) focus on study quality with standardized data collection and reporting; (e) improve statistical analysis; (f) cooperation between radiobiology and epidemiology; and (g) take consequences of radiosensitivity and radiosusceptibility into account.


Assuntos
Lesões por Radiação/epidemiologia , Proteção Radiológica , Tolerância a Radiação , Animais , Congressos como Assunto , Europa (Continente) , Humanos , Camundongos , Doses de Radiação , Exposição à Radiação , Lesões por Radiação/prevenção & controle , Monitoramento de Radiação , Radiobiologia , Radiometria , Risco
15.
Int J Radiat Biol ; 96(3): 297-323, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31852363

RESUMO

Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.


Assuntos
Neoplasias Induzidas por Radiação/diagnóstico , Radiação Ionizante , Transporte Ativo do Núcleo Celular , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carbono/metabolismo , Ciclo Celular , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Neoplasias/radioterapia , Estresse Oxidativo , Oxigênio/metabolismo , Lesões por Radiação , Proteção Radiológica , Tolerância a Radiação , Radioterapia , Processos Estocásticos
16.
N Engl J Med ; 355(10): 983-91, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957145

RESUMO

BACKGROUND: Adjuvant cisplatin-based chemotherapy improves survival among patients with completely resected non-small-cell lung cancer, but there is no validated clinical or biologic predictor of the benefit of chemotherapy. METHODS: We used immunohistochemical analysis to determine the expression of the excision repair cross-complementation group 1 (ERCC1) protein in operative specimens of non-small-cell lung cancer. The patients had been enrolled in the International Adjuvant Lung Cancer Trial, thereby allowing a comparison of the effect of adjuvant cisplatin-based chemotherapy on survival, according to ERCC1 expression. Overall survival was analyzed with a Cox model adjusted for clinical and pathological factors. RESULTS: Among 761 tumors, ERCC1 expression was positive in 335 (44%) and negative in 426 (56%). A benefit from cisplatin-based adjuvant chemotherapy was associated with the absence of ERCC1 (test for interaction, P=0.009). Adjuvant chemotherapy, as compared with observation, significantly prolonged survival among patients with ERCC1-negative tumors (adjusted hazard ratio for death, 0.65; 95% confidence interval [CI], 0.50 to 0.86; P=0.002) but not among patients with ERCC1-positive tumors (adjusted hazard ratio for death, 1.14; 95% CI, 0.84 to 1.55; P=0.40). Among patients who did not receive adjuvant chemotherapy, those with ERCC1-positive tumors survived longer than those with ERCC1-negative tumors (adjusted hazard ratio for death, 0.66; 95% CI, 0.49 to 0.90; P=0.009). CONCLUSIONS: Patients with completely resected non-small-cell lung cancer and ERCC1-negative tumors appear to benefit from adjuvant cisplatin-based chemotherapy, whereas patients with ERCC1-positive tumors do not.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/administração & dosagem , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Neoplasias Pulmonares/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Quimioterapia Adjuvante , Terapia Combinada , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Endonucleases/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , RNA Mensageiro/metabolismo , Taxa de Sobrevida
18.
Cancer Res ; 67(4): 1803-11, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17308123

RESUMO

Because of the central role of the endothelium in tissue homeostasis, protecting the vasculature from radiation-induced death is a major concern in tissue radioprotection. Premitotic apoptosis and mitotic death are two prevalent cell death pathways induced by ionizing radiation. Endothelial cells undergo apoptosis after radiation through generation of the sphingolipid ceramide. However, if mitotic death is known as the established radiation-induced death pathway for cycling eukaryotic cells, direct involvement of mitotic death in proliferating endothelial radiosensitivity has not been clearly shown. In this study, we proved that proliferating human microvascular endothelial cells (HMEC-1) undergo two waves of death after exposure to 15 Gy radiation: an early premitotic apoptosis dependent on ceramide generation and a delayed DNA damage-induced mitotic death. The fact that sphingosine-1-phosphate (S1P), a ceramide antagonist, protects HMEC-1 only from membrane-dependent apoptosis but not from DNA damage-induced mitotic death proves the independence of the two pathways. Furthermore, adding nocodazole, a mitotic inhibitor, to S1P affected both cell death mechanisms and fully prevented radiation-induced death. If our results fit with the standard model in which S1P signaling inhibits ceramide-mediated apoptosis induced by antitumor treatments, such as radiotherapy, they exclude, for the first time, a significant role of S1P-induced molecular survival pathway against mitotic death. Discrimination between ceramide-mediated apoptosis and DNA damage-induced mitotic death may give the opportunity to define a new class of radioprotectors for normal tissues in which quiescent endothelium represents the most sensitive target, while excluding malignant tumor containing pro-proliferating angiogenic endothelial cells that are sensitive to mitotic death.


Assuntos
Apoptose/efeitos dos fármacos , Ceramidas/antagonistas & inibidores , Dano ao DNA , Células Endoteliais/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Processos de Crescimento Celular , Ceramidas/biossíntese , Desipramina/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Humanos , Mitose/efeitos dos fármacos , Mitose/fisiologia , Nocodazol/farmacologia , Esfingosina/farmacologia
19.
Cancers (Basel) ; 11(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546867

RESUMO

Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of "deleted chromosomes" and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.

20.
Crit Rev Oncol Hematol ; 66(2): 99-117, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18243729

RESUMO

Telomeres form specialized structures at the ends of eukaryotic chromosomes, preventing them from being wrongly recognized as DNA damage. The human telomere DNA sequence is a tandem repetition of the sequence TTAGGG. In normal cells, the DNA replication machinery is unable to completely duplicate the telomeric DNA; thus, telomeres are shortened after every cell division. Having reached a critical length, telomeres may be recognized as double strand break DNA lesions, and cells eventually enter senescence. Carcinogenesis is a multistep process involving multiple mutations and chromosomal aberrations. One of the most prevalent aberrations in pre-cancerous lesions is telomere shortening and telomerase activation. We discuss the role and homeostasis of telomeres in normal cells and their implication in the early steps of carcinogenesis. We also discuss various techniques used, and their limitations, in the study of telomeres and genome instability and their role in carcinogenesis and related genomic modifications.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Neoplasias/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Reparo do DNA , Genômica/métodos , Heterocromatina/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Complexo Shelterina , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA