RESUMO
The efficiency of microalgal biomass production is a determining factor for the economic competitiveness of microalgae-based industries. N-acetylcysteine (NAC) and pluronic block polymers are two compounds of interest as novel culture media constituents because of their respective protective properties against oxidative stress and shear-stress-induced cell damage. Here we quantify the effect of NAC and two pluronic (F127 and F68) culture media additives upon the culture productivity of six marine microalgal species of relevance to the aquaculture industry (four diatoms-Chaetoceros calcitrans, Chaetoceros muelleri, Skeletonema costatum, and Thalassiosira pseudonana; two haptophytes-Tisochrysis lutea and Pavlova salina). Algal culture performance in response to the addition of NAC and pluronic, singly or combined, is dosage- and species-dependent. Combined NAC and pluronic F127 algal culture media additives resulted in specific growth rate increases of 38%, 16%, and 24% for C. calcitrans, C. muelleri, and P. salina, respectively. Enhanced culture productivity for strains belonging to the genus Chaetoceros was paired with an ~27% increase in stationary-phase cell density. For some of the species examined, culture media enrichments with NAC and pluronic resulted in increased omega-3-fatty acid content of the algal biomass. Larval development (i.e., growth and survival) of the Pacific oyster (Crassostrea gigas) was not changed when fed a mixture of microalgae grown in NAC- and F127-supplemented culture medium. Based upon these results, we propose that culture media enrichment with NAC and pluronic F127 is an effective and easily adopted approach to increase algal productivity and enhance the nutritional quality of marine microalgal strains commonly cultured for live-feed applications in aquaculture. KEY POINTS: ⢠Single and combined NAC and pluronic F127 culture media supplementation significantly enhanced the productivity of Chaetoceros calcitrans and Chaetoceros muelleri cultures. ⢠Culture media enrichments with NAC and F127 can increase omega-3-fatty acid content of algal biomass. ⢠Microalgae grown in NAC- and pluronic F127-supplemented culture media are suitable for live-feed applications.
Assuntos
Microalgas , Acetilcisteína , Biomassa , Meios de Cultura , Ácidos Graxos , Poloxâmero , PolímerosRESUMO
Four Gram-negative, aerobic, rod-shaped and yellow-orange pigmented bacteria (R-46770, R-48165T, R-50232 and R-50233) were isolated from intertidal sediment and water of the Westerschelde estuary between 2006 and 2012. Analysis of their 16S rRNA gene sequences revealed that the four strains form a separate cluster between validly described type strains of the genus Leeuwenhoekiella. DNA-DNA reassociation values of two representative strains (i.e. R-48165T and R-50232) of the new group with type strains of Leeuwenhoekiella species ranged from 18.7 to 56.6â%. A comparative genome analysis of the two strains and the type strains confirmed average nucleotide identity values from 75.6 to 94.4 %. The G+C contents of the genomic DNA of strains R-48165T and R-50232 were 37.80 and 37.83âmol%, respectively. The predominant cellular fatty acids of the four novel strains were summed feature 3 (i.e. C16â:â1ω7c and/or iso-C15â:â0 2-OH), iso-C15â:â0, iso-C15â:â1 G and iso-C17â:â0 3-OH. The four new Leeuwenhoekiella-like strains grew with 0.5-12â% (w/v) NaCl, at pH 5.5-9.0 and displayed optimum growth between 20 and 30 °C. Based on the results of phenotypic, genomic, phylogenetic and chemotaxonomic analyses, the four new strains represent a novel species of the genus Leeuwenhoekiella for which the name Leeuwenhoekiella aestuarii sp. nov. is proposed. The type strain is LMG 30908T (=R-48165T=CECT 9775T=DSM 107866T). Genome analysis of type strains of the genus Leeuwenhoekiella revealed a large number of glycosyl hydrolases, peptidases and carboxyl esterases per Mb, whereas the number of transporters per Mb was low compared to other bacteria. This confirmed the environmental role of Leeuwenhoekiella species as (bio)polymer degraders, with a specialization on degrading proteins and high molecular weight compounds. Additionally, the presence of a large number of genes involved in gliding motility and surface adhesion, and large numbers of glycosyl transferases per Mb confirmed the importance of these features for Leeuwenhoekiella species.
Assuntos
Flavobacteriaceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Estuários , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Países Baixos , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Global downwelling plane irradiance is a necessary variable to normalize water-leaving radiance measurements, reducing the magnitude and spectral variabilities introduced by the incident light field. As a result, the normalized measurements, known as remote sensing reflectance, have higher correlation with the inherent optical properties of the water body and so to the composition of optically active water components. For in situ measurements, the global downwelling plane irradiance can be estimated from the exitant radiance of sintered polytetrafluoroethylene plaques or other diffuse reflectance standards. This allows use of a single spectrometer to measure all necessary variables to estimate the remote sensing reflectance, reducing cost in acquisition and maintenance of instrumentation. However, despite being in use for more than 30 years, the uncertainty associated with the method has been only partially evaluated. In this study, we use a suite of sky radiance distributions for 24 atmospheres and nine solar zenith angles in combination with full bidirectional reflectance distribution function determinations of white and gray plaques to evaluate the uncertainties. The isolated and interactive effects of bidirectional reflectance distribution, shadowing, and tilt error sources are evaluated. We find that under the best-performing geometries of each plaque, and with appropriate estimation functions, average standard uncertainty ranges from 1% to 6.5%. The simulated errors are found to explain both previous empirical uncertainty estimates and new data collected during this study. Those errors are of the same magnitude as uncertainties of plane irradiance sensors (e.g., cosine collectors) and overlap with uncertainty requirements for different uses of in situ data, which supports the continued use of the plaque method in hydrologic optics research and monitoring. Recommendations are provided to improve the quality of measurements and assure that uncertainties will be in the range of those calculated here.
RESUMO
Human activities increasingly impact the functioning of marine food webs, but anthropogenic stressors are seldom included in ecological study designs. Diet quality, as distinct from just diet quantity, has moreover rarely been highlighted in food web studies in a stress context. We measured the effects of metal and pesticide stress (copper and atrazine) on the contribution of a benthic intertidal diatom community to two processes that are key to the functioning of intertidal systems: biomass (diet quantity) and lipid (diet quality) production. We then examined if stressors affected diatom functioning by selectively targeting the species contributing most to functioning (selective stress effects) or by changing the species' functional contribution (context-dependent effects). Finally, we tested if stress-induced changes in diet quality altered the energy flow to the diatoms' main grazers (harpacticoid copepods). Diatom diet quantity was reduced by metal stress but not by low pesticide levels due to the presence of an atrazine-tolerant, mixotrophic species. Selective effects of the pesticide reduced diatom diet quality by 60% and 75% at low and high pesticide levels respectively, by shifting diatom community structure from dominance by lipid-rich species toward dominance by an atrazine-tolerant, but lipid-poor, species. Context-dependent effects did not affect individual diatom lipid content at low levels of both stressors, but caused diatoms to lose 40% of their lipids at high copper stress. Stress-induced changes in diet quality predicted the energy flow from the diatoms to their copepod consumers, which lost half of their lipids when feeding on diatoms grown under low and high pesticide and high metal stress. Selective pesticide effects were a more important threat for trophic energy transfer than context-dependent effects of both stressors, with shifts in diatom community structure affecting the energy flow to their copepod grazers at stress levels where no changes in diatom lipid content were detected.
Assuntos
Atrazina/toxicidade , Copépodes/fisiologia , Cobre/toxicidade , Diatomáceas/efeitos dos fármacos , Cadeia Alimentar , Poluentes Químicos da Água/toxicidade , Animais , Biomassa , Copépodes/efeitos dos fármacos , Diatomáceas/fisiologia , Herbicidas/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacosRESUMO
The formation of robust resting cysts enables Acanthamoeba to resist harsh environmental conditions. This study investigated to what extent these cysts are resistant to physical and chemical stresses as applied in food industry cleaning and disinfection procedures. Moreover, it was assessed whether certain intracystic meat-borne bacterial pathogens are more stress resistant than free-living bacterial monocultures and if intracystic passage and subsequent association with trophozoites induces cross-tolerance toward other stressors. Several physical and chemical stressors (NaCl, H2O2, benzalkonium chloride, 55°C, heating until boiling, ethanol, dishwashing detergent, and sodium hypochlorite) frequently used in domestic and industrial food-related environments were tested against (i) Acanthamoeba castellanii cysts, (ii) single strains of bacterial monocultures, (iii) intracystic bacteria, and (iv) bacteria after intracystic passage (cyst-primed bacteria). Only heating until boiling and hypochlorite treatment were cysticidal. After boiling, no viable trophozoites could be recovered from the cysts, and hypochlorite treatment caused a 1.34- to 4.72-log10 cells/ml reduction in cyst viability. All treatments were effective in reducing or even eliminating the tested bacterial monocultures, whereas bacteria residing inside cysts were more tolerant toward these stressors. All cyst-primed bacteria exhibited an increased tolerance toward subsequent H2O2 (>92% decrease in median log10 CFU/ml reduction) and 70% ethanol (>99% decrease) treatments. Moreover, intracystic passage significantly increased the survival of Yersinia enterocolitica (74% decrease in median log10 reduction), Escherichia coli (58%), and Salmonella enterica (48%) after NaCl treatment and of E. coli (96%), S. enterica (99%), and Listeria monocytogenes (99%) after sodium hypochlorite treatment compared with that of nonprimed bacteria.IMPORTANCE The results from this study demonstrated that both viable and nonviable amoebal cysts can protect internalized bacteria against stressful conditions. Moreover, cyst passage can induce cross-tolerance in bacteria, increasing their survival when exposed to selected stressors. These findings underscore the potential importance of free-living amoebae in food-related environments and their impact on the persistence of meat-borne bacterial pathogens.
Assuntos
Acanthamoeba castellanii/crescimento & desenvolvimento , Escherichia coli/fisiologia , Listeria monocytogenes/fisiologia , Salmonella typhimurium/fisiologia , Yersinia enterocolitica/fisiologia , Acanthamoeba castellanii/efeitos dos fármacos , Acanthamoeba castellanii/microbiologia , Escherichia coli/efeitos dos fármacos , Etanol/farmacologia , Peróxido de Hidrogênio/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Yersinia enterocolitica/efeitos dos fármacosRESUMO
There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 µg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously.
Assuntos
Biodiversidade , Diatomáceas/fisiologia , Fitoplâncton/classificação , Fitoplâncton/fisiologia , Atrazina/farmacologia , Biomassa , Diatomáceas/efeitos dos fármacos , Herbicidas/farmacologia , Fitoplâncton/efeitos dos fármacos , Dinâmica PopulacionalRESUMO
The production of cysts, an integral part of the life cycle of many free-living protozoa, allows these organisms to survive adverse environmental conditions. Given the prevalence of free-living protozoa in food-related environments, it is hypothesized that these organisms play an important yet currently underinvestigated role in the epidemiology of foodborne pathogenic bacteria. Intracystic bacterial survival is highly relevant, as this would allow bacteria to survive the stringent cleaning and disinfection measures applied in food-related environments. The present study shows that strains of widespread and important foodborne bacteria (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, and Listeria monocytogenes) survive inside cysts of the ubiquitous amoeba Acanthamoeba castellanii, even when exposed to either antibiotic treatment (100 µg/ml gentamicin) or highly acidic conditions (pH 0.2) and resume active growth in broth media following excystment. Strain- and species-specific differences in survival periods were observed, with Salmonella enterica surviving up to 3 weeks inside amoebal cysts. Up to 53% of the cysts were infected with pathogenic bacteria, which were located in the cyst cytosol. Our study suggests that the role of free-living protozoa and especially their cysts in the persistence and epidemiology of foodborne bacterial pathogens in food-related environments may be much more important than hitherto assumed.
Assuntos
Acanthamoeba castellanii/microbiologia , Citosol/microbiologia , Enterobacteriaceae/isolamento & purificação , Listeria monocytogenes/isolamento & purificação , Viabilidade Microbiana , Acanthamoeba castellanii/efeitos dos fármacos , Antibacterianos/metabolismo , Enterobacteriaceae/fisiologia , Manipulação de Alimentos , Indústria Alimentícia , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Listeria monocytogenes/fisiologiaRESUMO
The spatial organization of biofilms is strongly regulated by chemical cues released by settling organisms. However, the exact nature of these interactions and the repertoire of chemical cues and signals that micro-organisms produce and exude in response to the presence of competitors remain largely unexplored. Biofilms dominated by microalgae often show remarkable, yet unexplained fine-scale patchy variation in species composition. Because this occurs even in absence of abiotic heterogeneity, antagonistic interactions might play a key role. Here we show that a marine benthic diatom produces chemical cues that cause chloroplast bleaching, a reduced photosynthetic efficiency, growth inhibition and massive cell death in naturally co-occurring competing microalgae. Using headspace solid phase microextraction (HS-SPME)-GC-MS, we demonstrate that this diatom exudes a diverse mixture of volatile iodinated and brominated metabolites including the natural product cyanogen bromide (BrCN), which exhibits pronounced allelopathic activity. Toxin production is light-dependent with a short BrCN burst after sunrise. BrCN acts as a short-term signal, leading to daily "cleaning" events around the algae. We show that allelopathic effects are H(2)O(2) dependent and link BrCN production to haloperoxidase activity. This strategy is a highly effective means of biofilm control and may provide an explanation for the poorly understood role of volatile halocarbons from marine algae, which contribute significantly to the atmospheric halocarbon budget.
Assuntos
Biofilmes , Brometo de Cianogênio/metabolismo , Diatomáceas/metabolismo , Feromônios/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase SólidaRESUMO
Diatoms are known to produce a variety of halogenated compounds, which were recently shown to have a role in allelopathic interactions between competing species. The production of these compounds is linked to haloperoxidase activity. This research, has shown that this system may also be involved in diatom-bacteria interactions via the H2O2 dependent inactivation of a type of quorum sensing (QS) molecule, i.e., N-ß-ketoacylated homoserine lactones (AHLs), by a natural haloperoxidase system from the benthic diatom Nitzschia cf pellucida. The AHL degradation pathway towards corresponding halogenated derivatives was elucidated via HPLC-MS analysis and the synthesis of a broad series of novel halogenated AHL analogues as reference compounds. Furthermore, their biological activity as quorum sensing modulators was directly compared and evaluated against a series of naturally occurring ß-keto-AHLs. It has been demonstrated that the loss of the QS activity results from the final cleavage of the halogenated N-acyl chain of the signal molecules.
Assuntos
Diatomáceas/química , Diatomáceas/metabolismo , Homosserina/metabolismo , Lactonas/metabolismo , Peroxidases/química , Percepção de Quorum/efeitos dos fármacos , Bioensaio , Catalase/química , Cromatografia Líquida de Alta Pressão , Chromobacterium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Lactonas/síntese química , Extração Líquido-Líquido , Espectrometria de Massas , FenolsulfonaftaleínaRESUMO
Intertidal microphytobenthos (MPB) are a major contributor to primary production in estuarine ecosystems. While their biomass is highly variable at multiple spatial and temporal scales, the underlying drivers are as yet little understood. Both in situ sampling and remote-sensing techniques often lack the temporal resolution or coverage to simultaneously capture short-term (intratidal to daily) and longer-term (weekly to annual) biomass changes. Our field setup with in-situ NDVI sensors allowed us to study MPB surface biomass variability at high temporal resolution (10 mins) for up to two years in a freshwater euglenoid dominated mudflat, and a brackish and a marine diatom dominated mudflat. MPB biomass showed marked periodicities at multiple temporal scales: seasonal, spring-neap and intratidal. The diatom-dominated MPB community showed a seasonal biomass peak in winter, while the euglenoid-dominated community showed biomass peaks during spring and summer, probably caused by underlying divergent responses to mainly irradiance, temperature and wind-induced resuspension, and macrobenthos grazing. Spring-neap periodicity likely resulted from differential migratory responses of the MPB communities to variation in timing and duration of daylight exposure. In the freshwater community, upward migration only occurred when exposure duration was sufficiently long (≥4 h). In the diatom-dominated community, morning daylight exposure resulted in highest NDVI values. This study highlights the differences in MPB biomass dynamics between MPB communities within estuarine ecosystems, and underscores the great potential of high-resolution temporal NDVI monitoring for more accurate estimates of MPB biomass and primary production.
Assuntos
Biofilmes , Biomassa , Diatomáceas , Monitoramento Ambiental , Estações do Ano , Diatomáceas/fisiologia , Monitoramento Ambiental/métodos , Ecossistema , EuglênidosRESUMO
The coccolithophore Emiliania huxleyi plays a pivotal role in the marine carbon cycle. However, we have only limited understanding of how its life cycle and bacterial interactions affect the production and composition of dissolved extracellular organic carbon and its transfer to the particulate pool. We traced the fate of photosynthetically fixed carbon during phosphate-limited stationary growth of non-axenic, calcifying E. huxleyi batch cultures, and more specifically the transfer of this carbon to bacteria and to dissolved high molecular weight neutral aldoses (HMW NAld) and extracellular particulate carbon. We then compared the dynamics of dissolved carbohydrates and transparent exopolymer particles (TEP) between cultures of non-axenic and axenic diploid E. huxleyi. In addition, we present the first data on extracellular organic carbon in (non-axenic) haploid E. huxleyi cultures. Bacteria enhanced the accumulation of dissolved polysaccharides and altered the composition of dissolved HMW NAld, while they also stimulated the formation of TEP containing high densities of charged polysaccharides in diploid E. huxleyi cultures. In haploid E. huxleyi cultures we found a more pronounced accumulation of dissolved carbohydrates, which had a different NAld composition than the diploid cultures. TEP formation was significantly lower than in the diploid cultures, despite the presence of bacteria. In diploid E. huxleyi cultures, we measured a high level of extracellular release of organic carbon (34-76%), retrieved mainly in the particulate pool instead of the dissolved pool. Enhanced formation of sticky TEP due to bacteria-alga interactions, in concert with the production of coccoliths, suggests that especially diploid E. huxleyi blooms increase the efficiency of export production in the ocean during dissolved phosphate-limited conditions.
Assuntos
Bactérias/metabolismo , Metabolismo dos Carboidratos , Haptófitas/metabolismo , Polímeros/metabolismo , Água do Mar/microbiologia , Bactérias/crescimento & desenvolvimento , Carboidratos/química , Carbono/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Haptófitas/citologia , Haptófitas/crescimento & desenvolvimento , Nitrogênio/metabolismoRESUMO
The role of geographic isolation in marine microbial speciation is hotly debated because of the high dispersal potential and large population sizes of planktonic microorganisms and the apparent lack of strong dispersal barriers in the open sea. Here, we show that gene flow between distant populations of the globally distributed, bloom-forming diatom species Pseudo-nitzschia pungens (clade I) is limited and follows a strong isolation by distance pattern. Furthermore, phylogenetic analysis implies that under appropriate geographic and environmental circumstances, like the pronounced climatic changes in the Pleistocene, population structuring may lead to speciation and hence may play an important role in diversification of marine planktonic microorganisms. A better understanding of the factors that control population structuring is thus essential to reveal the role of allopatric speciation in marine microorganisms.
Assuntos
Diatomáceas/genética , Fluxo Gênico/genética , Plâncton/genética , Água do Mar , Alelos , Loci Gênicos/genética , Geografia , Internacionalidade , Filogenia , Análise de Componente Principal , Fatores de TempoRESUMO
Our new data address the paradox of Late Ordovician glaciation under supposedly high pCO(2) (8 to 22x PAL: preindustrial atmospheric level). The paleobiogeographical distribution of chitinozoan ("mixed layer") marine zooplankton biotopes for the Hirnantian glacial maximum (440 Ma) are reconstructed and compared to those from the Sandbian (460 Ma): They demonstrate a steeper latitudinal temperature gradient and an equatorwards shift of the Polar Front through time from 55 degrees -70 degrees S to approximately 40 degrees S. These changes are comparable to those during Pleistocene interglacial-glacial cycles. In comparison with the Pleistocene, we hypothesize a significant decline in mean global temperature from the Sandbian to Hirnantian, proportional with a fall in pCO(2) from a modeled Sandbian level of approximately 8x PAL to approximately 5x PAL during the Hirnantian. Our data suggest that a compression of midlatitudinal biotopes and ecospace in response to the developing glaciation was a likely cause of the end-Ordovician mass extinction.
Assuntos
Atmosfera/análise , Dióxido de Carbono/análise , Clima , Animais , Ecossistema , Extinção Biológica , História Antiga , Camada de Gelo , Temperatura , ZooplânctonRESUMO
The melting of the Greenland Ice Sheet is accelerating, with glaciers shifting from marine to land termination and potential consequences for fjord ecosystems downstream. Monthly samples in 2016 in two fjords in southwest Greenland show that subglacial discharge from marine-terminating glaciers sustains high phytoplankton productivity that is dominated by diatoms and grazed by larger mesozooplankton throughout summer. In contrast, melting of land-terminating glaciers results in a fjord ecosystem dominated by bacteria, picophytoplankton and smaller zooplankton, which has only one-third of the annual productivity and half the CO2 uptake compared to the fjord downstream from marine-terminating glaciers.
RESUMO
We studied how changing human impacts affected phytoplankton dynamics in the freshwater and brackish tidal reaches of the Zeeschelde estuary (Belgium) between 2002 and 2018. Until the early 2000s, the Zeeschelde was heavily polluted due to high wastewater discharges. By 2008, water quality had improved, resulting in lower nutrient concentrations and higher oxygen levels. Since 2009, however, increased dredging activities resulted in altered hydrodynamics and increased suspended sediment concentration. The combined effects of these environmental changes were reflected in three marked transitions in phytoplankton community composition. Assemblages were dominated by Thalassiosirales and green algae (especially Scenedesmaceae) until 2003. The period 2003-2011 was characterized by the wax and wane of the centric diatoms Actinocyclus and Aulacoseira, while in the period 2012-2018 Thalassiosirales and Cyanobacteria became dominant, the latter mainly imported from the tributaries. Phytoplankton biomass increased sharply in 2003, after which there was a gradual decline until 2018. By 2018, the timing of the growing season had advanced with about one month compared to the start of the study, probably as a consequence of climate warming and intensified zooplankton grazing pressure. Our study shows that de-eutrophication (during the 2000s) and morphological interventions in the estuary (in the 2010s) were dominant drivers of phytoplankton dynamics but that the main shifts in community composition were triggered by extreme weather events, suggesting significant resistance of autochthonous communities to gradual changes in the environment.
Assuntos
Diatomáceas , Clima Extremo , Humanos , Fitoplâncton , Estuários , Bélgica , Hidrodinâmica , Biomassa , EutrofizaçãoRESUMO
Toward the poles, life on land is increasingly dominated by microorganisms, yet the evolutionary origin of polar microbiomes remains poorly understood. Here, we use metabarcoding of Arctic, sub-Antarctic, and Antarctic lacustrine benthic microbial communities to test the hypothesis that high-latitude microbiomes are recruited from a globally dispersing species pool through environmental selection. We demonstrate that taxonomic overlap between the regions is limited within most phyla, even at higher-order taxonomic levels, with unique deep-branching phylogenetic clades being present in each region. We show that local and regional taxon richness and net diversification rate of regionally restricted taxa differ substantially between polar regions in both microeukaryotic and bacterial biota. This suggests that long-term evolutionary divergence resulting from low interhemispheric dispersal and diversification in isolation has been a prominent process shaping present-day polar lake microbiomes. Our findings illuminate the distinctive biogeography of polar lake ecosystems and underscore that conservation efforts should include their unique microbiota.
Assuntos
Lagos , Microbiota , Filogenia , Evolução Biológica , Regiões AntárticasRESUMO
It is generally recognised that interactions between microalgae and bacteria play an important role in the functioning of marine ecosystems. In this context, increasing attention is paid to the processes that shape microalga-associated microbiomes. In recent years, conflicting evidence has been reported with respect to the relative importance of selective vs neutral processes in the assembly process. Whereas some studies report strong selection imposed by the host, others propose a more neutral, lottery-like assembly model according to which the chance of bacteria becoming part of the microbiome is proportional to their abundance in the environment and not driven by the selectional pressure created by the host. In the present study, we investigated to what degree selective vs neutral assembly processes constrain taxonomic, phylogenetic and functional variation within and between microbiomes associated with 69 isolates belonging to the Cylindrotheca closterium benthic marine diatom complex. The diatom cultures were initiated from non-axenic clonal isolates from different marine environments and geographic locations, and were then reared in a common garden (lab) environment. An important environmental imprint, likely due to in situ lottery dynamics, was apparent in the diatom microbiomes. However, microbiome assembly was also phylogenetically and functionally constrained through selective filtering related to the host microhabitat. Randomised microbiome assembly simulations revealed evidence for phylogenetic overdispersion in the observed microbiomes, reflecting an important role in the assembly process for competition between bacteria on the one hand and predominantly genetically driven differences between the hosts on the other hand. Our study thus shows that even between closely related diatom strains, host selection affects microbiome assembly, superimposing the predominantly stochastically driven recruitment process.
RESUMO
The introduction and survival of zoonotic bacterial pathogens in poultry farming have been linked to bacterial association with free-living protozoa. To date, however, no information is available on the persistence of protozoan communities in these environments across consecutive rearing cycles and how it is affected by farm- and habitat-specific characteristics and management strategies. We therefore investigated the spatial and temporal dynamics of free-living protozoa in three habitats (pipeline, water, and miscellaneous samples) in three commercial poultry houses across three rearing cycles by using the molecular fingerprinting technique denaturing gradient gel electrophoresis (DGGE). Our study provides strong evidence for the long-term (ca. 6-month) persistence of protozoa in broiler houses across consecutive rearing cycles. Various free-living protozoa (flagellates, ciliates, and amoebae), including known vectors of bacterial pathogens, were observed during the down periods in between rearing cycles. In addition, multivariate analysis and variation partitioning showed that the protozoan community structure in the broiler houses showed almost no change across rearing cycles and remained highly habitat and farm specific. Unlike in natural environments, protozoan communities inside broiler houses are therefore not seasonal. Our results imply that currently used biosecurity measures (cleaning and disinfection) applied during the down periods are not effective against many protozoans and therefore cannot prevent potential cross-contamination of bacterial pathogens via free-living protozoa between rearing cycles.
Assuntos
Alveolados/isolamento & purificação , Microbiologia Ambiental , Abrigo para Animais , Aves Domésticas/parasitologia , Animais , Impressões Digitais de DNA , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Viabilidade Microbiana , Desnaturação de Ácido Nucleico , Fatores de TempoRESUMO
Pinnularia is an ecologically important and species-rich genus of freshwater diatoms (Bacillariophyceae) showing considerable variation in frustule morphology. Interspecific evolutionary relationships were inferred for 36 Pinnularia taxa using a five-locus dataset. A range of fossil taxa, including newly discovered Middle Eocene forms of Pinnularia, was used to calibrate a relaxed molecular clock analysis and investigate temporal aspects of the genus' diversification. The multi-gene approach resulted in a well-resolved phylogeny of three major clades and several subclades that were frequently, but not universally, delimited by valve morphology. The genus Caloneis was not recovered as monophyletic, confirming that, as currently delimited, this genus is not evolutionarily meaningful and should be merged with Pinnularia. The Pinnularia-Caloneis complex is estimated to have diverged between the Upper Cretaceous and the early Eocene, implying a ghost range of at least 10 million year (Ma) in the fossil record.
Assuntos
Diatomáceas/genética , Genes/genética , Filogenia , Teorema de Bayes , Calibragem , Bases de Dados de Ácidos Nucleicos , Diatomáceas/classificação , Diatomáceas/ultraestrutura , Fósseis , Fatores de TempoRESUMO
The properties of incident light play a crucial role in the mating process of diatoms, a group of ecologically important microalgae. While species-specific requirements for light intensity and photoperiod have been observed in several diatom species, little is known about the light spectrum that allows sexual reproduction. Here, we study the effects of spectral properties and light intensity on the initiation and progression of sexual reproduction in the model benthic diatom Seminavis robusta. We found that distinct stages of the mating process have different requirements for light. Vigorous mating pair formation occurred under a broad range of light intensities, ranging from 10 to 81 µE m-2 s-1, while gametogenesis and subsequent stages were strongly affected by moderate light intensities of 27 µE m-2 s-1 and up. In addition, light of blue or blue-green wavelengths was required for the formation of mating pairs. Combining flow cytometric analysis with expression profiling of the diatom-specific cyclin dsCyc2 suggests that progression through a blue light-dependent checkpoint in the G1 cell cycle phase is essential for induction of sexual reproduction. Taken together, we expand the current model of mating in benthic pennate diatoms, which relies on the interplay between light, cell cycle and sex pheromone signaling.