Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 23(19): A1208-19, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406750

RESUMO

The radiative limit model, based on the black body theory extended to semiconductors and the flow equilibrium in the cell, has been adapted for Ga(x)In(1-x)As thermophotovoltaic devices. The impact of the thermal emitter temperature and the incident power density on the performance of cells for different Ga/In ratios has been investigated. The effects of the thickness of the cell and of light trapping have been investigated as well. A theoretical maximum efficiency of 24.2% has been calculated for a dislocation-free 5-µm-thick cell with a 0.43 eV bandgap illuminated by a source at 1800 K. The model also takes into account Auger recombinations and threading dislocations-related Shockley-Read-Hall recombinations.

2.
Opt Express ; 22 Suppl 3: A679-85, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922376

RESUMO

The hybrid structure of GaAs/GaAsSb quantum well (QW)/InAs quantum dots solar cells (QDSCs) is analyzed using power-dependent and temperature-dependent photoluminescence. We demonstrate that placing the GaAsSb QW beneath the QDs forms type-II characteristics that initiate at 12% Sb composition. Current density-voltage measurements demonstrate a decrease in power efficiency with increasing Sb composition. This could be attributed to increased valence band potential in the GaAsSb QW that subsequently limits hole transportation in the QD region. To reduce the confinement energy barrier, a 2 nm GaAs wall is inserted between GaAsSb QW and InAs QDs, leading to a 23% improvement in power efficiency for QDSCs.

3.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535696

RESUMO

With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity. The design rules are obtained by calculating the electronic transition energies for symmetric and antisymmetric double-QW states using a Schrödinger-Poisson solver. The sensor is grown and characterized aiming detection in mid-wave (~5 µm) to long-wave IR (~8 µm) spectral ranges. The structure is grown using molecular beam epitaxy (MBE) and contains 25 periods of coupled double GaAs QWs and Al0.38Ga0.62As barriers. One of the QWs in the pair is modulation-doped to provide asymmetry in potential. The QWIPs are tested with blackbody radiation and FTIR down to 77 K. As a result, the ratio of the responsivities of the two bands at about 5.5 and 8 µm is controlled over an order of magnitude demonstrating tunability between MWIR and LWIR spectral regions. Separate experiments using parameterized image transformations of wideband LWIR imagery are performed to lay the framework for utilizing tunable QWIP sensors in object recognition applications.

4.
Nano Lett ; 11(6): 2311-7, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21545165

RESUMO

We report a 50% increase in the power conversion efficiency of InAs/GaAs quantum dot solar cells due to n-doping of the interdot space. The n-doped device was compared with GaAs reference cell, undoped, and p-doped devices. We found that the quantum dots with built-in charge (Q-BIC) enhance electron intersubband quantum dot transitions, suppress fast electron capture processes, and preclude deterioration of the open circuit voltage in the n-doped structures. These factors lead to enhanced harvesting and efficient conversion of IR energy in the Q-BIC solar cells.


Assuntos
Arsenicais/química , Fontes de Energia Elétrica , Gálio/química , Índio/química , Pontos Quânticos , Energia Solar , Propriedades de Superfície
6.
Nanoscale Res Lett ; 6: 584, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22060635

RESUMO

We analyze the effect of doping on photoelectron kinetics in quantum dot [QD] structures and find two strong effects of the built-in-dot charge. First, the built-in-dot charge enhances the infrared [IR] transitions in QD structures. This effect significantly increases electron coupling to IR radiation and improves harvesting of the IR power in QD solar cells. Second, the built-in charge creates potential barriers around dots, and these barriers strongly suppress capture processes for photocarriers of the same sign as the built-in-dot charge. The second effect exponentially increases the photoelectron lifetime in unipolar devices, such as IR photodetectors. In bipolar devices, such as solar cells, the solar radiation creates the built-in-dot charge that equates the electron and hole capture rates. By providing additional charge to QDs, the appropriate doping can significantly suppress the capture and recombination processes via QDs. These improvements of IR absorption and photocarrier kinetics radically increase the responsivity of IR photodetectors and photovoltaic efficiency of QD solar cells.

7.
Nanoscale Res Lett ; 4(10): 1256, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-20596328
8.
Nanoscale Res Lett ; 4(1): 94-95, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20596389
11.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA