Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743215

RESUMO

We study the impact of radiation LET on manifestation of HRS/IRR response in Chinese hamster cells ovary cells exposed to radiations used in radiotherapy. Earlier we have investigated this response to carbon ions (455 MeV/amu) in the pristine Bragg curve plateau and behind the Bragg peak, 60Co γ-rays, and 14.5 MeV neutrons. Now we present results of cytogenetic metaphase analysis in plateau-phase CHO-K1 cells irradiated with scanning beam protons (83 MeV) at doses < 1 Gy and additional data for 14.5 MeV neutrons. Dose curves for frequency of total chromosome aberrations (CA, protons), paired fragments (protons, neutrons), aberrant cells (neutrons) had typical HRS/IRR structure: HRS region (up to 0.1 and 0.15 Gy), IRR region (0.1−0.6 Gy and 0.15−0.35 Gy) for protons and neutrons, respectively, and regular dose dependence. Taken together with previous results, the data show that LET increase shifts the HRS upper border (from 0.08−0.1 Gy for γ-rays, protons and plateau carbons to 0.12−0.15 Gy for "tail" carbons and neutrons). The IRR regions shortens (0.52−0.4 γ-rays and protons, 0.25 plateau carbons, 0.2 Gy "tail" carbons and neutrons). CA level of IRR increases by 1.5−2.5 times for carbons as compared to γ-rays and protons. Outside HRS/IRR the yield of CA also enhanced with LET increase. The results obtained for different LET radiations suggest that CHO-K1 cells with G1-like CA manifested the general feature of the HRS/IRR phenomena.


Assuntos
Nêutrons , Prótons , Animais , Aberrações Cromossômicas , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos
2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269835

RESUMO

The radioprotective effects of a new 1-isobutanoil-2-isopropylisothiourea derivative named T1082 are presented. Research methods included toxic characteristics, radioprotective activity (Till-McCulloch's test and 30-day survival test) in γ-ray total-body-irradiated mice, and a clinical and histological study of the effect of T1082 on acute radiation skin reactions (RSR) in rats after a single or fractionated ß-ray local irradiation. T1082 is more effective than its analogue, the NOS inhibitor T1023, at low concentrations and doses (1/12-1/8 LD10), both parenterally and intragastrically. In this case, its therapeutic index (LD50/ED50) reaches 30, and the optimal radioprotective doses (ED84-98-141-224 mg/kg) are an order less than the maximum tolerated doses-1/16-1/10 LD10. These properties allowed T1082, at a low intragastrical dose (160 mg/kg; 1/14 LD10), to significantly limit the severity of acute RSR after single (40 Gy) and fractionated (78 Gy) ß-ray irradiation. The results confirm T1082 as one of the safest emergency radioprotectors and indicate the prospects for its further development as a pharmacological agent for the prevention of RT complications.


Assuntos
Proteção Radiológica , Protetores contra Radiação , Animais , Raios gama , Dose Letal Mediana , Camundongos , Fosfatos , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Ratos
3.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502247

RESUMO

Previously, we showed that a nitric oxide synthase (NOS) inhibitor, compound T1023, induces transient hypoxia and prevents acute radiation syndrome (ARS) in mice. Significant efficacy (according to various tests, dose modifying factor (DMF)-1.6-1.9 against H-ARS/G-ARS) and safety in radioprotective doses (1/5-1/4 LD10) became the reason for testing its ability to prevent complications of tumor radiation therapy (RT). Research methods included studying T1023 effects on skin acute radiation reactions (RSR) in rats and mice without tumors and in tumor-bearing animals. The effects were evaluated using clinical, morphological and histological techniques as well as RTOG classification. T1023 administration prior to irradiation significantly limited the severity of acute RSR. This was due to a decrease in radiation alteration of the skin and underlying tissues, and the preservation of the functional activity of cell populations that are critical in the pathogenesis of radiation burn. The DMF values for T1023 for skin protection were 1.4-1.7. Moreover, its radioprotective effect was fully selective to normal tissues in RT models of solid tumors-T1023 reduced the severity of acute RSR and did not modify the antitumor effects of γ-radiation. The results indicate that T1023 can selectively protect the non-malignant tissues against γ-radiation due to hypoxic mechanism of action and potentiate opportunities of NOS inhibitors in RT complications prevention.


Assuntos
Carcinoma de Ehrlich/radioterapia , Raios gama/efeitos adversos , Óxido Nítrico Sintase/antagonistas & inibidores , Protetores contra Radiação/farmacologia , Radiodermite/tratamento farmacológico , Sarcoma Experimental/radioterapia , Tioureia/análogos & derivados , Animais , Carcinoma de Ehrlich/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteção Radiológica/métodos , Radiodermite/etiologia , Radiodermite/patologia , Ratos , Ratos Sprague-Dawley , Sarcoma Experimental/patologia , Tioureia/farmacologia
4.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337875

RESUMO

The development of adaptation strategies for crops under ever-changing climate conditions is a critically important food security issue. Studies of barley responses to ionising radiation showed that this evolutionarily ancient stress factor can be successfully used to identify molecular pathways involved in adaptation to a range of abiotic stressors. In order to identify potential molecular contributors to abiotic stress resilience, we examined the transcriptomic profiles of barley seedlings after exposure to γ-rays, electrons, and protons. A total of 553 unique differentially expressed genes with increased expression and 124 with decreased expression were detected. Among all types of radiation, the highest number of differentially expressed genes was observed in electron-irradiated samples (428 upregulated and 56 downregulated genes). Significant upregulation after exposure to the three types of radiation was shown by a set of ROS-responsive genes, genes involved in DNA repair, cell wall metabolism, auxin biosynthesis and signalling, as well as photosynthesis-related genes. Most of these genes are known to be involved in plant ROS-mediated responses to other abiotic stressors, especially with genotoxic components, such as heavy metals and drought. Ultimately, the modulation of molecular pathways of plant responses to ionising radiation may be a prospective tool for stress tolerance programmes.

5.
Curr Radiopharm ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693733

RESUMO

OBJECTIVE: Traditional cell-based radiobiological methods are inadequate for assessing the toxicity of ionizing radiation exposure in relation to the microstructure of the extracellular matrix. Organotypic tissue slices preserve the spatial organization observed in vivo, making the tissue easily accessible for visualization and staining. This study aims to explore the use of fluorescence microscopy of physiologically compatible 3D tissue cultures to assess the effects of ionizing radiation. METHODS: Organotypic tissue slices were obtained by vibratome, and their mechanical properties were studied. Slices were exposed by two ionizing radiation sources; electron beams (80 Gy and 4 Gy), and soft gamma irradiation (80 Gy and 4 Gy). Two tissue culture protocols were used: the standard (37°C), and hypothermic (30°C) conditions. A qualitative analysis of cell viability in organotypic tissue slices was performed using fluorescent dyes and standard laser confocal microscopy. RESULTS: Biological dosimetry is represented by differentially stained 200-µm thick organotypic tissue sections related to living and dead cells and cell metabolic activity. CONCLUSION: Our results underscore the ability of fluorescence laser scanning confocal microscopy to rapidly assess the radiobiological effects of ionizing radiation in vitro on 3D organotypic tissue slices.

6.
Biomed Phys Eng Express ; 8(3)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34879364

RESUMO

The relative biological efficiency of particle irradiation could be predicted with a wide variety of radiobiological models for various end-points. We validate the forecast of modified Microdosimetric Kinetic Modelin vitrousing combined data of reference Co-60 radiation and carbon ion plateau data for specific cell line to optimize the survival function in spread-out Bragg Peak obtained with an especially designed ridge filter. We used Geant4 Monte-Carlo software to simulate the fragment contribution along Bragg curve inside water phantom, open-source toolkit Survival to predict the expected linear-quadratic model parameters for each fragment, and in-house software to form the total survival curve in spread-out Bragg Peak. The irradiation was performed at U-70 synchrotron with an especially designed Aluminum ridge filter under the control of PTW and in-house ionization chambers. The cell clonogenic assay was conducted with the B14-150 cell line. The data analysis was accomplished using scipy and CERN ROOT. The clonogenic assay represents the survival in spread-out Bragg Peak at different points and qualitatively follows the modeled survival curve very well. The quantitative difference is within 3σ, and the deviation might be explained by the uncertainties of physical modeling using Monte-Carlo methods. Overall, the obtained results are promising for further usage in radiobiological studies or carbon ion radiotherapy. Shaping the survival curve in the region of interest (i.e., spread-out Bragg Peak) is a comprehensive task that requires high-performance computing approaches. Nevertheless, the method's potential application is related to the development of next-generation treatment planning systems for ion beams. This can open a wide range of improvements in patient treatment outcome, provide new optimized fractionation regimes or optimized dose delivery schemes, and serve as an entrance point to the translational science approach.


Assuntos
Carbono , Radioterapia com Íons Pesados , Alumínio , Humanos , Método de Monte Carlo , Radiobiologia
7.
Radiat Res ; 194(5): 532-543, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34609510

RESUMO

In this work, studies were performed to investigate the toxicological, biochemical, vasotropic and radiomodifying properties of the new nitric oxide synthase (NOS) inhibitor, compound T1023. Toxicological studies included the estimation of acute toxicity in mice after i.p. administration of T1023. Radiometric analysis and electron paramagnetic resonance spectroscopy were used to study NOS-inhibitory properties of T1023 in vitro and in vivo, respectively. T1023 vasoactive properties were studied in rat central hemodynamics. Radiobiological experiments were performed using endogenous and exogenous spleen colony formation as well as 30-day survival tests. The morphological changes in peripheral blood and bone marrow (BM) induced with T1023 were analyzed in mice during hematopoietic acute radiation syndrome (H-ARS). It was shown that T1023 is a sufficiently safe compound (LD10 of 317 mg/kg; LD50 of 410 mg/kg). It is an effective competitive NOS-inhibitor that is 10-to-15-fold selective to endothelial and inducible NOS (IC50 for nNOS, iNOS, eNOS: 52.3, 3.2 and 5.1 µM, respectively). Its NOS-inhibitory activity is realized in vivo and is accompanied by an increase in vascular tone. Its single i.p. administration in doses greater than 1/8 LD10 provides significant (40-50%) and long-lasting (more than 90 min) weakening of cardiac output, which can cause transient hypoxia. In radiobiological studies, T1023 proved to be a hypoxic radioprotector. Its radioprotective effect was observed only when administered prophylactically [single i.p dose, 5-120 min before total-body irradiation (TBI)] and only in doses that reduced cardiac output (1/8 LD10 and more, 40 mg/kg for mice), and was correlated in time with the dynamics of circulatory depression. Its radioprotective effect was not observed when administered in vitro and in the first 4 h after TBI. The optimal radioprotective doses of T1023 are relatively safe (1/ 5-1/4 LD10). In addition, T1023 effectively prevents H-ARS and gastrointestinal acute radiation syndrome (G-ARS) in experimental animals in vivo: dose modifying factor of 1.6-1.9. In the H-ARS mouse model, the prophylactic effect of T1023 (75 mg/kg, single i.p. injection) was accompanied by clinically significant effects. There was an express decrease in the degree of indicators of early BM devastation (by 40%) and maximal neutropenia and thrombocytopenia (2-2.5 times), in addition to a reduction in recovery time (by 30-40%). The obtained experimental results and literature data indicate that NOS inhibitors are an independent class of vasoactive radioprotectors with a specific hypoxic mechanism of action. NOS inhibitors provide new opportunities for developing effective and safe tools for the prevention of ARS.


Assuntos
Tioureia/análogos & derivados , Animais , Inibidores Enzimáticos , Camundongos , Óxido Nítrico Sintase , Óxido Nítrico Sintase Tipo II , Proteção Radiológica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA