Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Internet Res ; 25: e45013, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639292

RESUMO

BACKGROUND: Thorough data stewardship is a key enabler of comprehensive health research. Processes such as data collection, storage, access, sharing, and analytics require researchers to follow elaborate data management strategies properly and consistently. Studies have shown that findable, accessible, interoperable, and reusable (FAIR) data leads to improved data sharing in different scientific domains. OBJECTIVE: This scoping review identifies and discusses concepts, approaches, implementation experiences, and lessons learned in FAIR initiatives in health research data. METHODS: The Arksey and O'Malley stage-based methodological framework for scoping reviews was applied. PubMed, Web of Science, and Google Scholar were searched to access relevant publications. Articles written in English, published between 2014 and 2020, and addressing FAIR concepts or practices in the health domain were included. The 3 data sources were deduplicated using a reference management software. In total, 2 independent authors reviewed the eligibility of each article based on defined inclusion and exclusion criteria. A charting tool was used to extract information from the full-text papers. The results were reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. RESULTS: A total of 2.18% (34/1561) of the screened articles were included in the final review. The authors reported FAIRification approaches, which include interpolation, inclusion of comprehensive data dictionaries, repository design, semantic interoperability, ontologies, data quality, linked data, and requirement gathering for FAIRification tools. Challenges and mitigation strategies associated with FAIRification, such as high setup costs, data politics, technical and administrative issues, privacy concerns, and difficulties encountered in sharing health data despite its sensitive nature were also reported. We found various workflows, tools, and infrastructures designed by different groups worldwide to facilitate the FAIRification of health research data. We also uncovered a wide range of problems and questions that researchers are trying to address by using the different workflows, tools, and infrastructures. Although the concept of FAIR data stewardship in the health research domain is relatively new, almost all continents have been reached by at least one network trying to achieve health data FAIRness. Documented outcomes of FAIRification efforts include peer-reviewed publications, improved data sharing, facilitated data reuse, return on investment, and new treatments. Successful FAIRification of data has informed the management and prognosis of various diseases such as cancer, cardiovascular diseases, and neurological diseases. Efforts to FAIRify data on a wider variety of diseases have been ongoing since the COVID-19 pandemic. CONCLUSIONS: This work summarises projects, tools, and workflows for the FAIRification of health research data. The comprehensive review shows that implementing the FAIR concept in health data stewardship carries the promise of improved research data management and transparency in the era of big data and open research publishing. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/22505.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Pandemias , Big Data , Confiabilidade dos Dados
2.
Nano Lett ; 13(1): 179-87, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23190055

RESUMO

When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

3.
JMIR Res Protoc ; 10(2): e22505, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528373

RESUMO

BACKGROUND: Data stewardship is an essential driver of research and clinical practice. Data collection, storage, access, sharing, and analytics are dependent on the proper and consistent use of data management principles among the investigators. Since 2016, the FAIR (findable, accessible, interoperable, and reusable) guiding principles for research data management have been resonating in scientific communities. Enabling data to be findable, accessible, interoperable, and reusable is currently believed to strengthen data sharing, reduce duplicated efforts, and move toward harmonization of data from heterogeneous unconnected data silos. FAIR initiatives and implementation trends are rising in different facets of scientific domains. It is important to understand the concepts and implementation practices of the FAIR data principles as applied to human health data by studying the flourishing initiatives and implementation lessons relevant to improved health research, particularly for data sharing during the coronavirus pandemic. OBJECTIVE: This paper aims to conduct a scoping review to identify concepts, approaches, implementation experiences, and lessons learned in FAIR initiatives in the health data domain. METHODS: The Arksey and O'Malley stage-based methodological framework for scoping reviews will be used for this review. PubMed, Web of Science, and Google Scholar will be searched to access relevant primary and grey publications. Articles written in English and published from 2014 onwards with FAIR principle concepts or practices in the health domain will be included. Duplication among the 3 data sources will be removed using a reference management software. The articles will then be exported to a systematic review management software. At least two independent authors will review the eligibility of each article based on defined inclusion and exclusion criteria. A pretested charting tool will be used to extract relevant information from the full-text papers. Qualitative thematic synthesis analysis methods will be employed by coding and developing themes. Themes will be derived from the research questions and contents in the included papers. RESULTS: The results will be reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews) reporting guidelines. We anticipate finalizing the manuscript for this work in 2021. CONCLUSIONS: We believe comprehensive information about the FAIR data principles, initiatives, implementation practices, and lessons learned in the FAIRification process in the health domain is paramount to supporting both evidence-based clinical practice and research transparency in the era of big data and open research publishing. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/22505.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA