RESUMO
Castration is frequently used to reduce aggressive behavior and improve the meat quality of animals. Traditionally, surgical and mechanical castration are used to sterilize the animals, but these approaches are associated with a high level of pain, stress, long recovery periods, and post-operative infections. Immunocastration is a new animal-friendly, painless alternative castration technique that is used to prevent undesired sexual behavior, reduce aggressive behavior, prevent unwanted pregnancy, control wildlife populations and wandering species, enhance growth performance, improve meat quality, and treat various sex hormone-dependent disorders. The mechanism of immunocastration includes the immunological block of the hypothalamic-pituitary-gonadal axis (HPG axis) which inhibits gonadotropin secretions, causes atrophy of gonadal tissues, and inhibits gametogenesis, resulting in infertility in both female and male mammals. By the mid-1990s, various immunocastration vaccines have been tested in different animal models to achieve successful castration effects. Recently, genetic immunocastration especially DNA vaccine has gained increasing attention due to its safety, being animal-friendly, and being easy to use. This review aims to evaluate the potential of traditional castration methods, as well as the current status of immunocastration vaccines, their effects, and future prospective.
Assuntos
Bem-Estar do Animal , Vacinas , Masculino , Feminino , Animais , Orquiectomia/veterinária , Carne , Hormônio Liberador de Gonadotropina , MamíferosRESUMO
Contagious ecthyma is a contagious zoonotic disease caused by the Orf virus that can infect farm animals and humans, but no vaccine is available for pregnant mothers. Excessive oxidative stress during pregnancy can suppress the vaccine immune response in pregnant mothers; hence, maternal micronutrient supplementation could effectively improve the immune response, health, and oxidative status during pregnancy. In this study, we employed an 8-week-old pregnant rat model to receive a single intramuscular dose of 200 µg of ORF DNA vaccine with or without vitamin E and selenium supplementation to evaluate their effect on immune responses (specific IgG and IgG isotypes), oxidative stress, liver enzymes, and blood glucose levels in maternal-neonatal serum and milk secretions. Additionally, antioxidant-related gene expressions were analyzed in the maternal placenta and pups' liver. The results showed that supplementation of vitamin E and selenium with ORF DNA vaccination increased the production of specific antibody and IgG isotypes (IgG1 and IgG2a) and reduced the oxidative stress in neonatal-maternal serum and milk compared to both the control group and those vaccinated without supplementation (p < 0.05). Notably, the ORF DNA vaccine did not cause oxidative stress and hepatic damage. However, combined supplementation of vitamin E and selenium with DNA vaccination significantly decreased serum malondialdehyde (MDA) levels and improved the antioxidant-related enzyme activities of glutathione peroxidase (GPX), superoxide dismutase 1 (SOD1), and selenoprotein P (SELP) in the maternal placenta and liver of pups (p < 0.05). In conclusion, maternal supplementation of vitamin E and selenium enhanced the immune responses of the ORF DNA vaccine by mitigating oxidative stress in pregnant rats and could thus be a promising strategy for better health outcomes for both mothers and neonates.
RESUMO
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD + ) is a small molecule that participates in hundreds of metabolism-related reactions. NAD + levels are decreased in CKD, and NAD + supplementation is protective. However, both the mechanism of how NAD + supplementation protects from CKD, as well as the cell types most responsible, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD + precursor, stimulates renal peroxisome proliferator-activated receptor α signaling and restores FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing shows that renal metabolic pathways are impaired in Alport mice and dramatically activated by NR in both sexes. These transcriptional changes are confirmed by orthogonal imaging techniques and biochemical assays. Single nuclei RNA-sequencing and spatial transcriptomics, both the first of their kind from Alport mice, show that NAD + supplementation restores FAO in the proximal tubules with minimal effects on the podocytes. Finally, we also report, for the first time, sex differences at the transcriptional level in this Alport model. Male Alport mice had more severe inflammation and fibrosis than female mice at the transcriptional level. In summary, the data herein identify both the protective mechanism and location of NAD + supplementation in this model of CKD.
RESUMO
Pregnancy is a critical period associated with alterations in physiologic, biologic, and immunologic processes, which can affect maternal-fetal health through development of several infectious diseases. At birth, neonates have an immature immune system that makes them more susceptible to severe viral infections and diseases. For this reason, different maternal nutritional and immunization interventions have been used to improve the immune and health status of the mother and her neonate through passive immunity. Here, we reviewed the protective role of maternal immunization with different types of vaccines, especially genetic vaccines, during pregnancy in maternal-fetal health, immune response, colostrum quality, immune response, and anti-oxidative status. For this purpose, we have used different scientific databases (PubMed and Google Scholar) and other official web pages. We customized the search period range from the year 2000 to 2023 using the key words "maternal immunization" OR "gestation period/pregnancy" OR "genetic vaccination" OR "maternal-fetal health" OR "micronutrients" OR "neonatal immunity" "oxidative stress" OR "colostrum quality". The evidence demonstrated that inactivated or killed vaccines produced significant immune protection in the mother and fetus. Furthermore, most recent studies have suggested that the use of genetic vaccines (mRNA and DNA) during pregnancy is efficient at triggering the immune response in mother and neonate without the risk of undesired pregnancy outcomes. However, factors such as maternal redox balance, nutritional status, and the timing of immunization play essential roles in regulating immune response inflammatory status, antioxidant capacity, and the welfare of both the pregnant mother and her newborn.