Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioorg Med Chem ; 35: 116057, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33610011

RESUMO

The present study describes the discovery of novel inhibitors of mushroom tyrosinase enzyme. For that purpose, a series of varyingly substituted 2-phenylchromone analogues 1-28 were synthesized and characterized in detail by various spectroscopic techniques (UV-Vis, FTIR, 1H NMR, 13C NMR) and mass spectrometry. All the derivatives (1-28) were screened in vitro for their inhibitory potential against mushroom tyrosinase enzyme. Interestingly, all the synthetic compounds displayed good to excellent inhibitory activity with IC50 values ranging from 0.093 ± 0.003 µg/ml to 23.58 ± 0.94 µg/ml for brominated 3-hydroxy-2-phenylchromones and 0.22 ± 0.017 µg/ml to 22.22 ± 1.1 µg/ml for brominated 2-phenylchromones against tyrosinase in comparison to the standard kojic acid (IC50 = 1.79 ± 0.64 µg/ml). Remarkably, the bromine atoms attached on ring A attribute to increases the inhibitory potential of 2-phenylchromone moiety and anti-tyrosinase assay demonstrated that compound 10 (IC50 = 0.093 ± 0.003 µg/ml) was found almost nineteenfold, 11 (IC50 = 0.126 ± 0.015 µg/ml) fourteenfold and 26 (IC50 = 0.22 ± 0.017 µg/ml) about eightfold more active than the positive control. Notably, among the already literature reported tyrosinase inhibitors, these analogues have been found the most active inhibitors of mushroom tyrosinase with the lowest possible IC50 values. To design and develop novel tyrosinase inhibitors using 2-phenylchromone as a structural motif in the future, a limited structure-activity relationship was established. Moreover, in silico studies were carried out to rationalize the binding mode of interactions of all the targeted compounds (1-28) with the active site of enzymes. The experimental and theoretical results are in parallel with one another. In addition, molecular description was performed with the drug-likeness and bioactivity scores. Computational analysis predicted that few compounds are in a linear correlation with Lipinski's RO5 indicating superb drug-likeness and bioactivity score for drug targets.


Assuntos
Cromonas/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
2.
Bioorg Chem ; 91: 103124, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31319297

RESUMO

To explore new scaffolds for the treat of Alzheimer's disease appears to be an inspiring goal. In this context, a series of varyingly substituted flavonols and 4-thioflavonols have been designed and synthesized efficiently. All the newly synthesized compounds were characterized unambiguously by common spectroscopic techniques (IR, 1H-, 13C NMR) and mass spectrometry (EI-MS). All the derivatives (1-24) were evaluated in vitro for their inhibitory potential against cholinesterase enzymes. The results exhibited that these derivatives were potent selective inhibitors of acetylcholinesterase (AChE), except the compound 11 which was selective inhibitor of butyrylcholinesterase (BChE), with varying degree of IC50 values. Remarkably, the compounds 20 and 23 have been found the most potent almost dual inhibitors of AChE and BChE amongst the series with IC50 values even less than the standard drug. The experimental results in silico were further validated by molecular docking studies in order to find their binding modes with the active pockets of AChE and BChE enzymes.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Flavonóis/química , Acetilcolinesterase/química , Butirilcolinesterase/química , Domínio Catalítico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Flavonóis/síntese química , Flavonóis/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 26(12): 3696-3706, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29886083

RESUMO

The prime objective of this research work is to prepare readily soluble synthetic analogues of naturally occurring 3-O-flavonol glycosides and then investigate the influence of various substituents on biological properties of synthetic compounds. In this context, a series of varyingly substituted 3-O-flavonol glycosides have been designed, synthesized and characterized efficiently. The structures of synthetic molecules were unambiguously corroborated by IR, 1H, 13C NMR and ESI-MS spectroscopic techniques. The structure of compound 22 was also analyzed by X-ray diffraction analysis. All the synthetic compounds (21-30) were evaluated for in vitro inhibitory potential against cholinesterase enzymes. The results displayed that most of the derivatives were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with varying degree of IC50 values. The experimental results were further encouraged by molecular docking studies in order to explore their binding behavior with the active pocket of AChE and BChE enzymes. The experimental and theoretical results are in parallel with one another.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Glicosídeos/química , Acetilcolinesterase/química , Sítios de Ligação , Butirilcolinesterase/química , Inibidores da Colinesterase/metabolismo , Cristalografia por Raios X , Flavonóis/química , Flavonóis/metabolismo , Glicosídeos/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Termodinâmica
4.
Bioorg Med Chem ; 25(1): 100-106, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27780618

RESUMO

The present study describes efficient and facile syntheses of varyingly substituted 3-thioaurones from the corresponding 3-oxoaurones using Lawesson's reagent and phosphorous pentasulfide. In comparison, the latter methodology was proved more convenient, giving higher yields and required short and simple methodology. The structures of synthetic compounds were unambiguously elucidated by IR, MS and NMR spectroscopy. All synthetic compounds were screened for their inhibitory potential against in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Molecular docking studies were also performed in order to examine their binding interactions with AChE and BChE human proteins. Both studies revealed that some of these compounds were found to be good inhibitors against AChE and BChE.


Assuntos
Acetilcolinesterase/metabolismo , Benzofuranos/química , Benzofuranos/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Benzofuranos/síntese química , Butirilcolinesterase/química , Inibidores da Colinesterase/síntese química , Humanos , Simulação de Acoplamento Molecular , Termodinâmica
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124093, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428162

RESUMO

Theoretical computations of pyrimidine-based azo dyes were performed by the DFT approach using the B3LYP/6 - 31G(d,p) basis set. The molecules were optimized based on the same basis set by calculating the minimum energy. FMOs, DOS and GCRD were computed for kinetic stability and chemical reactivity of the selected compounds. The MEP surface was studied to locate nucleophilic and electrophilic attack zones. The energy gap was carefully studied for pyrimidine-based azo dyes. Vibrational spectroscopy was studied in the most prominent regions with respect to PED assignments. Similarly, the UV-Vis absorption technique was calculated using the TD-DFT approach in different solvent media. The electronic structure of each atom in a molecule was examined via the electron localization function (ELF) and localized orbital locator (LOL). Non-covalent interactions were explored using reduced density gradient analysis. The combination of experimental and theoretical data allowed us to correlate the structural modifications with the observed photophysical properties, facilitating the design of azo dyes with tailored characteristics. This work contributes to the fundamental understanding of azo dyes and offers a foundation for the development of new materials with enhanced photophysical and electronic properties.

6.
RSC Adv ; 14(31): 22769-22780, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39035128

RESUMO

In this study, a series of novel bis-pyrimidine derivatives (1P-8P) were designed, synthesized, characterized, and investigated for their in vitro inhibitory activity against mushroom tyrosinase, an enzyme critical in melanin biosynthesis and implicated in various hyperpigmentation disorders. To the best of our knowledge, the bispyrimidine scaffold has been evaluated for the first time for its tyrosinase inhibitory activity. Their inhibitory activities were assessed, revealing inhibition with IC50 values in the micromolar range. Additionally, this series of compounds were found to inhibit tyrosinase activity in a mixed-type manner, with IC50 values ranging from 12.36 ± 1.24 to 86.67 ± 3.08 µM. To further elucidate the binding interactions, molecular docking simulations were performed, identifying key residues in the active site responsible for binding affinity. Furthermore, molecular dynamics (MD) simulations were conducted to assess the dynamic behavior, stability, and binding affinity of the most potent inhibitor, compound 6P. Quantitative Structure-Activity Relationship (QSAR) models were developed to correlate the structural features of the bis-pyrimidines with their inhibitory activity, providing insights into the structure-activity relationships (SAR) that govern their potency. The experimental and theoretical findings demonstrated excellent agreement. These findings pave the way for the development of novel bis-pyrimidine-based therapeutic agents for treating hyperpigmentation and related conditions.

7.
J Biomol Struct Dyn ; 42(1): 244-260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37096830

RESUMO

In the present study, a series of 2-amino-4,6-diarylpyrimidine derivatives was designed, synthesized, characterized and evaluated for their in vitro α-glucosidase and α-amylase enzyme inhibition assays. The outcomes proved that this class of compounds exhibit considerable inhibitory activity against both enzymes. Among the target compounds, compounds 4p and 6p demonstrated the most potent dual inhibition with IC50 = 0.087 ± 0.01 µM for α-glucosidase; 0.189 ± 0.02 µM for α-amylase and IC50 = 0.095 ± 0.03 µM for α-glucosidase; 0.214 ± 0.03 µM for α-amylase, respectively as compared to the standard rutin (IC50 = 0.192 ± 0.02 µM for α-glucosidase and 0.224 ± 0.02 µM for α-amylase). Remarkably, the enzyme inhibition results indicate that test compounds have stronger inhibitory effect on the target enzymes than the positive control, with a significantly lower IC50 value. Moreover, these series of compounds were found to inhibit α-glucosidase activity in a reversible mixed-type manner with IC50 between 0.087 ± 0.01 µM to 1.952 ± 0.26 µM. Furthermore, molecular docking studies were performed to affirm the binding interactions of this scaffold to the active sites of α-glucosidase and α-amylase enzymes. The quantitative structure-activity relationship (QSAR) investigations showed a strong association between 1p-15p structures and their inhibitory actions (IC50) with a correlation value (R2) of 0.999916. Finally, molecular dynamic (MD) simulations were carried out to assess the dynamic behavior, stability of the protein-ligand complex, and binding affinity of the most active inhibitor 4p. The experimental and theoretical results therefore exposed a very good compatibility. Additionally, the drug-likeness assay revealed that some compounds exhibit a linear association with Lipinski's rule of five, indicating good drug-likeness and bioactivity scores for pharmacological targets.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , Relação Estrutura-Atividade , alfa-Amilases , Estrutura Molecular
8.
Heliyon ; 10(9): e29658, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694111

RESUMO

In the current study, seven (7) aurone derivatives (ADs) were synthesized and employed to in-vitro LOX and COX-2 assays, in-vivo models of acetic acid-induced mice writhing, formalin-induced mice paw licking and tail immersion test to evaluate their analgesic potential at the doses of 10 mg and 20 mg/kg body weight. Molecular docking was performed to know the active binding site at both LOX and COX-2 as compared to standard drugs. Among the ADs, 2-(3,4-dimethoxybenzylidene)benzofuran-3(2H)-one (WE-4)possessed optimal LOX and COX-2 inhibitory strength (IC50=0.30 µM and 0.22 µM) as compared to standard (ZileutonIC50 = 0.08 µM, CelecoxibIC50 = 0.05 µM). Similarly in various pain models compound WE-4 showed significantly (p < 0.05) highest percent analgesic potency as compared to control at a dose of 20 mg/kg i.e. 77.60 % analgesic effect in acetic acid model, 49.97 % (in Phase-1) and 70.93 % (inPhase-2) analgesic effect in formalin pain model and 74.71 % analgesic response in tail immersion model. By the administration of Naloxone, the tail flicking latencies were reversed (antagonized) in all treatments. The WE-4 (at 10 mg/kg and 20 mg/kg) was antagonized after 90 min from 11.23 ± 0.93 and 13.41 ± 1.21 to 5.30 ± 0.48 and 4.80 ± 0.61 respectively as compared to standard Tramadol (from 17.74 ± 1.33 to 3.70 ± 0.48), showing the opiodergic receptor involvement. The molecular docking study of ADs revealed that WE-4 had a higher affinity for LOX and COX-2 with docking scores of -4.324 and -5.843 respectively. As a whole, among the tested ADs, compound WE-4 demonstrated excellent analgesic effects that may have been caused by inhibiting the LOX and COX-2 pathways.

9.
RSC Adv ; 14(30): 21464-21537, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38979466

RESUMO

Terpyridine-based metal complexes have emerged as versatile and indispensable building blocks in the realm of modern chemistry, offering a plethora of applications spanning from materials science to catalysis and beyond. This comprehensive review article delves into the multifaceted world of terpyridine complexes, presenting an overview of their synthesis, structural diversity, and coordination chemistry principles. Focusing on their diverse functionalities, we explore their pivotal roles in catalysis, supramolecular chemistry, luminescent materials, and nanoscience. Furthermore, we highlight the burgeoning applications of terpyridine complexes in sustainable energy technologies, biomimetic systems, and medicinal chemistry, underscoring their remarkable adaptability to address pressing challenges in these fields. By elucidating the pivotal role of terpyridine complexes as versatile building blocks, this review provides valuable insights into their current state-of-the-art applications and future potential, thus inspiring continued innovation and exploration in this exciting area of research.

10.
Eur J Med Chem ; 273: 116523, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795518

RESUMO

In the current study, a series of fluorine-substituted piperidine derivatives (1-8) has been synthesized and characterized by various spectroscopic techniques. In vitro and in vivo enzyme inhibitory studies were conducted to elucidate the efficacy of these compounds, shedding light on their potential therapeutic applications. To the best of our knowledge, for the first time, these heterocyclic structures have been investigated against α-glucosidase and cholinesterase enzymes. The antioxidant activity of the synthesized compounds was also assessed. Evaluation of synthesized compounds revealed notable inhibitory effects on α-glucosidase and cholinesterases. Remarkably, the target compounds (1-8) exhibited extraordinary α-glucosidase inhibitory activity as compared to the standard acarbose by several-fold. Subsequently, the potential antidiabetic effects of compounds 2, 4, 5, and 6 were validated using a STZ-induced diabetic rat model. Kinetic studies were also performed to understand the mechanism of inhibition, while structure-activity relationship analyses provided valuable insights into the structural features governing enzyme inhibition. Kinetic investigations revealed that compound 4 displayed a competitive mode of inhibition against α-glucosidase, whereas compound 2 demonstrated mixed-type behavior against AChE. To delve deeper into the binding interactions between the synthesized compounds and their respective enzyme targets, molecular docking studies were conducted. Overall, our findings highlight the promising potential of these densely substituted piperidines as multifunctional agents for the treatment of diseases associated with dysregulated glucose metabolism and cholinergic dysfunction.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Diabetes Mellitus Experimental , Flúor , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Simulação de Acoplamento Molecular , Piperidinas , alfa-Glucosidases , Animais , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/síntese química , Piperidinas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Relação Estrutura-Atividade , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/uso terapêutico , Ratos , Flúor/química , alfa-Glucosidases/metabolismo , Estrutura Molecular , Masculino , Acetilcolinesterase/metabolismo , Relação Dose-Resposta a Droga , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Colinesterases/metabolismo , Estreptozocina
12.
Explor Res Clin Soc Pharm ; 9: 100240, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994355

RESUMO

Background: Pharmaceutical pictograms are standardized images used to visually convey medication instructions. Very little is known about the ability of Africans to interpret these images. Objectives: Thus, the aim of this study was to assess the guessability (ability to correctly guess meaning) of selected International Pharmaceutical Federation (FIP) and United States Pharmacopoeia (USP) pictograms in members of the Nigerian public. Methods: A cross-sectional survey was carried out between May and August 2021 on 400 randomly sampled members of Nigerian public. Selected pictograms (24 FIP and 22 USP pictograms) were grouped and printed on A3 sheets of paper which were used to interview members of the public who fulfilled the study's' eligibility criteria. Respondents were asked to guess the meanings of either the FIP or USP pictograms, and their answers written down verbatim. Descriptive and inferential statistics were used to report the data collected. Results: Four hundred respondents were interviewed, with 200 respondents each assessing the guessability of the FIP and USP pictograms. The guessability of assessed FIP pictograms ranged between 3.5 and 95%, while that for the USP pictograms was 27.5-97%. Eleven FIP and Thirteen USP pictograms respectively achieved the International Organization for Standardization (ISO) comprehensibility cutoff point of 67%. Guessing performance (the total number of pictograms correctly guessed by an individual) of respondents that assessed the FIP pictograms was significantly associated with their age (p = 0.044) and highest level of education completed (p = 0.003). For the USP pictograms, guessing performance was only significantly associated with the highest educational level completed (p < 0.001). Conclusions: Guessability of both pictogram types varied widely, but the guessability of the USP pictograms was generally better than that for the FIP pictograms. Many of the tested pictograms may however need to be redesigned before they can be correctly interpreted by members of the Nigerian public.

13.
J Biomol Struct Dyn ; 41(17): 8307-8322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255179

RESUMO

Tyrosinase enzyme plays an essential role in melanin biosynthesis and enzymatic browning of fruits and vegetables. To discover potent tyrosinase inhibitors, the present studies were undertaken. In this context, synthetic aurone derivatives 26-50 were designed, synthesized, and structurally elucidated by various spectroscopic techniques including IR, UV, 1H- & 13C-NMR and mass spectrometry. The target compounds 26-50 were screened for their anti-tyrosinase inhibitory potential, and thus kinetic mechanism was analyzed by Lineweaver-Burk plots. All target compounds exhibited good to excellent IC50 values in the range of 7.12 ± 0.32 µM to 66.82 ± 2.44 µM. These synthesized aurone derivatives were found as potent tyrosinase inhibitors relative to the standard kojic acid (IC50 = 16.69 ± 2.81 µM) and the compound 39 inhibited tyrosinase non-competitively (Ki = 11.8 µM) by forming an enzyme-inhibitor complex. The binding modes of these molecules were ascribed through molecular docking studies against tyrosinase protein (PDB ID: 2Y9X). The quantitative structure-activity relationship studies displayed a good correlation between 26-50 structures and their anti-tyrosinase activity (IC50) with a correlation coefficient (R2) of 0.9926. The computational studies were coherent with experimental results and these ligands exhibited good binding values against tyrosinase and interacted with core residues of target protein. Moreover, the drug-likeness analysis also showed that some compounds have a linear correlation with Lipinski's rule of five, indicating good drug-likeness and bioactivity scores for pharmacological targets.Communicated by Ramaswamy H. Sarma.

14.
RSC Adv ; 13(5): 3210-3233, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756398

RESUMO

Infections caused by bacteria are a significant issue on a global scale, and imperative action is required to discover novel or improved therapeutic agents. Flavonoids are a class of plant-derived compounds that have a variety of potentially useful bioactivities. These activities include immediate antimicrobial properties, synergistic effect with antimicrobials, ferocious repression of pathogenicity, anti-urease activity etc. This review summarizes current studies concerning anti-urease actions of flavonoids as well as structural-activity correlation investigations of the flavonoid core structure. It is possible that if researchers investigate the many structural changes that may be made in flavonoid rings, they'll be able to build up novel compounds that have powerful and effective anti-urease properties.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123130, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37517274

RESUMO

This paper reports on a study of the photophysical properties, density functional theory (DFT) calculations, infrared (IR), ultraviolet (UV) and nuclear magnetic resonance (NMR) spectroscopic techniques of a series of aurone compounds. The photophysical properties were investigated using UV absorption and fluorescence spectroscopy in a dimethyl sulfoxide (DMSO) solution. Furthermore, the fluorescence quantum yields of the target compounds (1-24) were also investigated. Remarkably, these compounds revealed high quantum yields (Φ = 0.001-0.729) as compared to the already existing aurones in literature. The DFT calculations were performed to elucidate the electronic structure, energy levels and draw a comparison between experimental and theoretical findings. The simulated properties such as molecular frontier orbitals, the density of states, reactivity descriptors (GCRD), electrostatic potential distribution, transition density matrix, electron localization function (ELF) and localized orbital locator (LOL) have been calculated using DFT. The DFT calculations provided insight into the electronic structure and energy levels of the aurone compounds, while the IR and UV spectroscopy results shed light on their functional groups and electronic transitions, respectively. The results of this study contribute to a better understanding of the photophysical properties of aurone compounds and suggest their potential use in technological applications.

16.
ACS Omega ; 8(19): 17195-17208, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214694

RESUMO

Benzothiazepines are pharmacologically active compounds, frequently utilized as a precursor for acquiring versatile molecules with several bioactivities including anti-inflammatory, anti-human immunodeficiency virus (anti-HIV), analgesic, antitumor, antimicrobial, and antitubercular. In this study, the 2,4-diphenyl-2,3-dihydro-1,5-benzothiazepine scaffold was selected for their in vitro, docking, and druglikeness studies to evaluate their inhibitory potential against mushroom tyrosinase. All synthesized analogues, 1-14, exhibited moderate to good IC50 values ranging from 1.21 to 70.65 µM. The synthesized benzothiazepine derivatives were potent tyrosinase inhibitors, which outperformed the reference kojic acid (IC50 = 16.69 µM). The kinetic analysis revealed that compound 2 (2-(3,4-dimethoxyphenyl)-4-(p-tolyl)-2,3-dihydrobenzo[b][1,4]thiazepine) was a mixed-type tyrosinase inhibitor with a Ki value of 1.01 µM. Molecular modeling studies against tyrosinase protein (PDB ID: 2Y9X) were conducted to recognize the binding modes of these analogues. The utilization of molecular dynamic (MD) simulations enabled the assessment of the protein-ligand complex's dynamic behavior, stability, and binding affinity for the compounds. These simulations ultimately led to the identification of compound 2 as a potential inhibitor of tyrosinase. Additionally, a druglikeness study was conducted, which supported the promising potential of the new analogues as novel antityrosinase agents. The in silico studies were consistent with the in vitro results, showing that these ligands had good binding scores against tyrosinase and interacted with the core residues of the target protein. Gaussian 09 was used for the geometry optimization of all complexes.

17.
RSC Adv ; 13(24): 16413-16452, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37274413

RESUMO

Heterocycles are a class of compounds that have been found to be potent inhibitors of alkaline phosphatase (AP), an enzyme that plays a critical role in various physiological processes such as bone metabolism, cell growth and differentiation, and has been linked to several diseases such as cancer and osteoporosis. AP is a widely distributed enzyme, and its inhibition has been considered as a therapeutic strategy for the treatment of these diseases. Heterocyclic compounds have been found to inhibit AP by binding to the active site of the enzyme, thereby inhibiting its activity. Heterocyclic compounds such as imidazoles, pyrazoles, and pyridines have been found to be potent AP inhibitors and have been studied as potential therapeutics for the treatment of cancer, osteoporosis, and other diseases. However, the development of more potent and selective inhibitors that can be used as therapeutics for the treatment of various diseases is an ongoing area of research. Additionally, the study of the mechanism of action of heterocyclic AP inhibitors is an ongoing area of research, which could lead to the identification of new targets and new therapeutic strategies. The enzyme known as AP has various physiological functions and is present in multiple tissues and organs throughout the body. This article presents an overview of the different types of AP isoforms, their distribution, and physiological roles. It also discusses the structure and mechanism of AP, including the hydrolysis of phosphate groups. Furthermore, the importance of AP as a clinical marker for liver disease, bone disorders, and cancer is emphasized, as well as its use in the diagnosis of rare inherited disorders such as hypophosphatasia. The potential therapeutic applications of AP inhibitors for different diseases are also explored. The objective of this literature review is to examine the function of alkaline phosphatase in various physiological conditions and diseases, as well as analyze the structure-activity relationships of recently reported inhibitors. The present review summarizes the structure-activity relationship (SAR) of various heterocyclic compounds as AP inhibitors. The SAR studies of these compounds have revealed that the presence of a heterocyclic ring, particularly a pyridine, pyrimidine, or pyrazole ring, in the molecule is essential for inhibitory activity. Additionally, the substitution pattern and stereochemistry of the heterocyclic ring also play a crucial role in determining the potency of the inhibitor.

18.
RSC Adv ; 12(31): 19764-19855, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919585

RESUMO

Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.

19.
ACS Omega ; 7(20): 17444-17461, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647459

RESUMO

To find new potential tyrosinase inhibitors, a diverse range of 2-arylchromone-4-thione derivatives (2a-2p) were designed and synthesized by employing a multistep strategy, and the newly synthesized compounds, for the first time, were screened in vitro for their tyrosinase inhibitory activity. In this context, the newly synthesized compounds (2a-2p) were characterized using a combination of several spectroscopic techniques including Fourier transform infrared, UV-vis, 1H NMR, and 13C NMR spectroscopies and electron ionization-mass spectrometry. All the target compounds were potent against tyrosinase as compared to the standard inhibitor kojic acid (half-maximal inhibitory concentration (IC50) = 12.6 ± 0.6 µM). The compounds (2a-2p) produced IC50 values in the range from 1.12 ± 0.04 to 5.68 ± 0.13 µM. Among the synthesized 4-thioflavones and 4-thioflavonols, the compound 2n exhibited excellent tyrosinase inhibitory activity with the lowest IC50 of 1.12 ± 0.04 µM that could be recommended as potential lead candidates to cure tyrosinase-mediated hyperpigmentation in the future. A kinetic study of compound 2n revealed that compound 2n inhibited tyrosinase in a competitive mode. Furthermore, the nontoxic performance of the most beneficial compounds ranging from 1 to 25 g/mL was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test method for A375 human melanoma cells for the highly efficient target compounds (2m, 2n, 2o, and 2p). Moreover, a molecular modeling study was performed against tyrosinase enzyme (2Y9X) to check the binding interactions of the synthesized compounds (2a-2p) against the target protein. Furthermore, quantitative structure-activity relationship studies were conducted based on an antityrosinase assay. The value of the correlation coefficient (R 2) 0.9997 shows that there was a good correlation between (2a-2p) structures and selected properties. The geometry optimization of all complexes was performed by using Gaussian 09. Additionally, a drug-likeness research was used to establish the potent analogues' positive action as a new antityrosinase agent (2n, 2o, and 2p).

20.
J Biomol Struct Dyn ; 40(8): 3777-3788, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33251983

RESUMO

The COVID-19 pandemic has claimed more than a million lives worldwide within a short time span. Due to the unavailability of specific antiviral drugs or vaccine, the infections are causing panic both in general public and among healthcare providers. Therefore, an urgent discovery and development of effective antiviral drug for the treatment of COVID-19 is highly desired. Targeting the main protease (Mpro) of the causative agent, SARS-CoV-2 has great potential for drug discovery and drug repurposing efforts. Published crystal structures of SARS-CoV-2 Mpro further facilitated in silico investigations for discovering new inhibitors against Mpro. The present study aimed to screen several libraries of synthetic flavonoids and benzisothiazolinones as potential SARS-CoV-2 Mpro inhibitors using in silico methods. The short-listed compounds after virtual screening were filtered through SwissADME modeling tool to remove molecules with unfavorable pharmacokinetics and medicinal properties. The drug-like molecules were further subjected to iterative docking for the identification of top binders of SARS-CoV-2 Mpro. Finally, molecular dynamic (MD) simulations and binding free energy calculations were performed for the evaluation of the dynamic behavior, stability of protein-ligand complex, and binding affinity, resulting in the identification of thioflavonol, TF-9 as a potential inhibitor of Mpro. The computational studies further revealed the binding of TF-9 close to catalytic dyad and interactions with conserved residues in the S1 subsite of the substrate binding site. Our in-silico study demonstrated that synthetic analogs of flavonoids, particularly thioflavonols, have a strong tendency to inhibit the main protease Mpro, and thereby inhibit the reproduction of SARS-CoV-2. Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Flavonoides/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Peptídeo Hidrolases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA