Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(7): 4052-4065, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881574

RESUMO

This paper reports the acid-controlled divergent synthesis of 3-pyrrolidin-2-yl-1H-indoles and symmetric and unsymmetrical bis(indolyl)methanes (BIMs) through photocatalyzed decarboxylative coupling and Friedel-Crafts alkylation reactions, respectively. The protocol involves C-H functionalization, switching formation of two products, room-temperature conditions, low photocatalyst loadings, without strong oxidant, and moderate to excellent yields. This method has been applied for the synthesis of natural product vibrindole A and 1,1-bis(1H-indol-3-yl)-2-phenylethane.

2.
J Nat Prod ; 86(5): 1335-1344, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37137165

RESUMO

While obesity is a well-known health threatening condition worldwide, effective pharmacological interventions for obesity suppression have been limited due to adverse effects. Therefore, it is important to explore alternative medical treatments for combating obesity. Inhibition of the adipogenesis process and lipid accumulation are critical targets for controlling and treating obesity. Gardenia jasminoides Ellis is a traditional herbal remedy for various ailments. A natural product from its fruit, genipin, has major pharmacological properties; it is anti-inflammatory and antidiabetic. We investigated the effects of a genipin analogue, G300, on adipogenic differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs). G300 suppressed the expression of adipogenic marker genes and adipokines secreted by adipocytes at concentrations of 10 and 20 µM, which effectively reduced the adipogenic differentiation of hBM-MSCs and lipid accumulation in adipocytes. It also improved adipocyte function by lowering inflammatory cytokine secretion and increasing glucose uptake. For the first time, we show that G300 has the potential to be a novel therapeutic agent for the treatment of obesity and its related disorders.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Medula Óssea/metabolismo , Células Cultivadas , Diferenciação Celular , Obesidade , Lipídeos , Células da Medula Óssea
3.
Pharm Dev Technol ; 27(4): 379-388, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35388736

RESUMO

Andrographolide is a group of diterpenoid lactone isolated from Andrographis paniculata (Burm. F.) NEES. One of the analogues is 19-O-triphenylmethylandrographolide (RSPP050) which possesses anticancer activity. In seeking to capitalise on the last property, we have investigated the in vitro tumour targeting capabilities and MRI imaging for hepatocellular carcinoma. In this study, we have designed galactose-targeted and non-targeted micelles comprised of poly(ethylene glycol)-b-poly(lactide) that enveloped RSPP050 as an anticancer agent and superparamagnetic iron oxide (SPIO) as a contrast agent. The targeting abilities were endeavored by examining the cellular uptake with MTT assay, fluorescence microscopy, Prussian blue staining, and in vitro MRI. Targeted SPIO micelles as a T2* contrast agent decreased the relative T2* MRI intensity at 3 h. Results revealed that galactose micelles displayed 10.91 ± 0.19% drug loading content, -37.17 ± 0.63 mV zeta potential, and these micelles at the concentration of 0.5 µg/ml exhibited higher cytotoxicity than non-targeted micelles and free RSPP050 after incubation for 24 h. Fluorescence microscopy and Prussian blue staining at 3 h demonstrated significant cellular uptake by HepG2 cells. Thus, anticancer activity of RSPP050 could be improved using galactose as a targeting ligand and theranostic function was achieved using SPIO.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Meios de Contraste , Galactose , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Micelas
4.
Chemistry ; 27(33): 8473-8478, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33844345

RESUMO

A new hypervalent-iodine(III)-mediated tandem reaction involving oxidative dearomatization and in situ aziridination of phenolic amines is described, providing a mild and effective method for the assembly of structurally interesting and synthetically useful aziridines. Importantly, the densely functionalized aziridines resulting from this unprecedented tandem reaction offer a platform for expeditious access to architecturally diverse aza-heterocycles through transformations initiated by selective ring-opening of aziridines.

5.
Bioorg Med Chem Lett ; 50: 128331, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418573

RESUMO

A novel series of 1,6-bis-triazole-benzyl-α-glucoside derivatives (7a-7ee) were designed, synthesized and evaluated for inhibitory activity against α-glucosidase. Most of the synthesized compounds exhibited good activity with IC50 ranging from 3.73 µM to 53.34 µM and are more potent than the standard drug acarbose (IC50 = 146.25 ± 0.40 µM). SARs study showed the ester and menthol moiety play an important role in the inhibitory activity. The molecular docking model of the potent compounds 7f, 7z, 7cc and 7dd showed good binding energy and interacts well with amino acid residues around the active site of the enzyme, which confirmed the in vitro activity results.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucanos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
6.
Bioorg Med Chem Lett ; 45: 128135, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044119

RESUMO

Twenty six propargylamine mycophenolate analogues were designed and synthesized from mycophenolic acid 1 employing a key step A3-coupling reaction. Their cytotoxic activity was examined against six cancer cell lines. Compounds 6a, 6j, 6t, 6u, and 6z exhibited selective cytotoxicity towards neuroblastoma (SH-SY5Y) cancer cells and were less toxic to normal cells in comparison to the lead compound, MPA 1 and a standard drug, ellipticine. Molecular docking results suggested that compound 6a is fit well in the key amino acid of three proteins (CDK9, EGFR, and VEGFR-2) as targets in cancer therapy. The propargylamine mycophenolate scaffold might be a valuable starting point for development of new neuroblastoma anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Ácido Micofenólico/farmacologia , Neuroblastoma/tratamento farmacológico , Pargilina/análogos & derivados , Propilaminas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ácido Micofenólico/síntese química , Ácido Micofenólico/química , Neuroblastoma/patologia , Pargilina/síntese química , Pargilina/química , Pargilina/farmacologia , Propilaminas/síntese química , Propilaminas/química , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 33: 127741, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316411

RESUMO

Two new series of 19-silylether- and 19-formyl-7-acetyl-12-amino-14-deoxyandrographolide analogues were designed and synthesized from natural andrographolide via key step reactions including allylic hydroxylation, tandem CAE reaction and one pot formylation. Evaluation of their cytotoxicity against eight cancer cells line found 6e exhibited the highest activity on MCF-7 cancer cell (IC50 2.93) and comparable to the drug elipticin. Replacement of silylether at C-19 with formyl group exhibited selective activity on P-388 cell line. Computational studies revealed the amino group at C-12 and O-acetoxy at C-7 position play significant roles in cytotoxicity against MCF-7 cancer cells. Cytotoxicity of these two series highlights the importance of 12-substituted-14-deoxyandrographolide scaffold and these types of compounds could be employed in future developments against breast cancer.


Assuntos
Antineoplásicos/farmacologia , Diterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 29: 115886, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290909

RESUMO

A novel series of acanthoic acid analogues containing triazole moiety were synthesized through esterification and CuAAC reaction. Evaluation of their biological activities against four cell lines of cholangiocarcinoma cells showed that 3d exhibited the strongest activity with an IC50 value of 18 µM against KKU-213 cell line, which was 8 fold more potent than acanthoic acid. Interestingly, the triazole ring and nitro group on benzyl ring play very significant role in cytotoxic activity. The computational studies revealed that 3d occupies the binding energy of -12.7 and -10.8 kcal/mol with CDK-2 and EGFR protein kinases, respectively. This result might provide a beginning for the development of acanthoic acid analogues as an anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Diterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/patologia , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
9.
Phytother Res ; 35(12): 7018-7026, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34779075

RESUMO

Acanthoic acid (AA) is an active substance that is extracted from Croton oblongifolius Roxb., a traditional plant in Thailand. The antiinflammatory effect of AA on NF-κB pathway has been exclusively reported, however, its anticancer effect is still lacking. PEL is a B cell lymphoma that is mostly found in HIV patients. The prognosis and progression of PEL patients are terribly poor with a median survival time less than 6 months, so the new effective treatment is urgently needed. In this study, we found that AA effectively inhibited PEL cell proliferation with IC50s at 120-130 µM in well-representative cells, while the IC50s of AA in PBMC were higher (>200 µM). AA increased percentages of Annexin V/PI positive cells, whereas adding of caspase inhibitor (Q-VD-OPh) prevented AA-induced cell death. The antiapoptotic protein, c-FLIP, was downregulated by AA which leading to the activation of caspase-8 and -3. Combination of AA and TRAIL dramatically enhanced apoptotic cell death. In PEL xenograft model, AA at the dose of 250 mg/kg effectively inhibited PEL tumor growth without detectable toxicities assessed by mice weight and appearance.


Assuntos
Diterpenos , Infecções por HIV , Linfoma de Efusão Primária , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Leucócitos Mononucleares , Linfoma de Efusão Primária/tratamento farmacológico , Camundongos
10.
Bioorg Med Chem Lett ; 30(15): 127276, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32527455

RESUMO

A new series of alkynyl glycoside analogues were designed and synthesized from cheap and a commercially available sugar by introduction of various alkynyl and alkyl groups at C-1 and C-6 positions of the sugar ring. The inhibitory abilities of alkynyl glycosides were investigated in vitro on mushroom tyrosinase for the catalysis of l-Tyrosine and l-DOPA as substrates and comparing with arbutin and kojic acid. Non-terminal alkyne compound 2d showed excellent tyrosinase inhibitory activity (IC50 54.0 µM) against l-Tyrosine comparable to arbutin (IC50 1.46 mM) while 2b exhibited potent activities (IC50 34.3 µM) against L-DOPA higher than kojic acid (IC50 0.11 mM) and arbutin (IC50 13.3 mM). Kinetic studies revealed that compound 2d was a non-competitive inhibitor with the best Ki value of 21 µM and formed an irreversible receptor complex with mushroom tyrosinase. The SARs results showed that the type of alkyne and alkyl groups at position C-6 on sugar and the stereoisomer played an important role in determining their inhibitory activities. The potent activity of alkynyl glycosides identified in this study highlight the importance of this scaffold and these compounds are very modestly potent to the development of new class for tyrosinase inhibitor.


Assuntos
Alcinos/farmacologia , Inibidores Enzimáticos/farmacologia , Glicosídeos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Agaricales/enzimologia , Alcinos/síntese química , Alcinos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicosídeos/síntese química , Glicosídeos/química , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 30(14): 127263, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527561

RESUMO

A series of 21 new analogues of C-12 dithiocarbamate andrographolide was designed and synthesized from natural andrographolide isolated from a common Thai plant, Andrographis paniculata. The reaction used to manipulate the andrographolide scaffold was conducted in one pot under mild reaction conditions. This avoided toxic catalysts and gave nearly quantitative yields of new analogues, generally without by-products and can be easily scaled -up for industrial processing. All new analogues were evaluated against nine cancer cell lines, some analogues exhibited greater selective cytotoxic activity to MCF-7 cancer cell than that of the parent andrographolide and cancer drugs.


Assuntos
Andrographis/química , Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Desenho de Fármacos , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
12.
J Org Chem ; 83(21): 13233-13242, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298733

RESUMO

A new strategy for the synthesis of bis-indoletriazoles was developed using a sequential one-pot four-step procedure via I2 and H2SO4-SiO2 catalyzed Friedel-Crafts reactions of indole with aldehyde followed by N-alkylation with propargyl bromide, azidation, and copper(I)-catalyzed azide alkyne cycloaddition (CuAAC). The reaction proceeded smoothly at room temperature in a short time, and a series of bis-indoletriazoles were obtained in good to excellent yields proving the generality of this one-pot methodology.

13.
Bioorg Med Chem Lett ; 28(9): 1558-1561, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29606574

RESUMO

New iridoid glycoside derivatives from durantoside I, the latter from the dried flowers and leaves of Citharexylum spinosum, were synthesized by variously modifying a sugar moiety by silylation or acetylation and/or removal of cinnamate group at C-7 position and subsequent screening for comparative cytotoxicity against several cancer cell lines. Addition of alkylsilane to durantoside I and removal of cinnamate group were most effective in improving cytotoxicity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glicosídeos/farmacologia , Glicosídeos Iridoides/farmacologia , Iridoides/farmacologia , Verbenaceae/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Glicosídeos Iridoides/química , Glicosídeos Iridoides/isolamento & purificação , Iridoides/química , Iridoides/isolamento & purificação , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
14.
AAPS PharmSciTech ; 19(7): 3123-3133, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30117042

RESUMO

Andrographolide analog, namely 19-tert-butyldiphenylsilyl-8,17-epoxy andrographolide (or 3A.1) has been reported to be a potential anticancer agent for several types of cancer. Due to its poor aqueous solubility, 3A.1 was incorporated within self-assembly polymeric nanoparticles made of naphthyl-grafted succinyl chitosan (NSC), octyl-grafted succinyl chitosan (OSC), and benzyl-grafted succinyl chitosan (BSC). These 3A.1-loaded nanoparticles were nanosized (< 200 nm) and spherical in shape with a negative surface charge. 3A.1-loaded nanoparticles were produced using a dropping method, which 40% initial drug adding exhibited the highest entrapment efficiency. The release of 3A.1 from the 3A.1-loaded nanoparticles displayed a delayed release pattern. Under acidic conditions (pH 1.2), there was no free drug release. After the pH was adjusted to 6.8, a high cumulative 3A.1 release was obtained which was dependent on the hydrophobic moieties. These 3A.1-loaded pH-sensitive nanoparticles proved to be beneficial for specifically delivering anticancer drugs to the targeted colon cancer sites. In vitro anticancer activity against HT-29 found that the 3A.1-loaded nanoparticles had significantly lower IC50 than that of the free drug and promoted apoptosis. Additionally, in vitro wound-healing migration on HN-22 revealed that free 3A.1 and the 3A.1-loaded nanoparticles inhibited cell motility compared with untreated cells. These pH-sensitive amphiphilic chitosan nanoparticles may be promising nanocarriers for oral anticancer drug delivery to colorectal cancer cells. Graphical abstract ᅟ.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Nanopartículas , Movimento Celular/efeitos dos fármacos , Quitosana/química , Diterpenos/administração & dosagem , Diterpenos/química , Liberação Controlada de Fármacos , Células HT29 , Humanos , Nanopartículas/química
15.
Bioorg Med Chem Lett ; 27(23): 5139-5143, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097170

RESUMO

A series of 14-deoxy-11,12-didehydroandrographolide analogues were synthesized from naturally occurring andrographolide and their cytotoxicity evaluated against nine cancer cell lines including cholangiocarcinoma. Analogues 5a and 5b exhibited the most potent cytotoxicity with ED50s of 3.37 and 3.08 µM on KKU-M213 cell lines and 2.93 and 3.27 µM on KKU-100 cell lines, respectively. Selective cytotoxicity on cholangiocarcinoma cell lines identified in this study highlight the importance of structural modification in the development of drugs for this cancer.


Assuntos
Antineoplásicos/síntese química , Diterpenos/química , Andrographis/química , Andrographis/metabolismo , Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Diterpenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Extratos Vegetais/química , Relação Estrutura-Atividade
16.
Chem Pharm Bull (Tokyo) ; 65(6): 530-537, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28566645

RESUMO

RSPP050 (AG50) is one of the semi-synthetic andrographolide that is isolated from Andrographis paniculata NEES (Acanthaceae). The anti-proliferation effects of AG50 against cholangiocarcinoma (HuCCT1) were displayed high cytotoxicity. Unfortunately, poor water solubility of AG50 limited its clinical applications. This study aimed to increase the concentration of AG50 in water and drug loading and release study in phosphate-buffered saline (PBS) in the absence/presence of pig liver esterase enzyme. Cytotoxicity of AG50-loaded polymeric micelles was evaluated against HuCCT1. AG50 loaded micelles were prepared by film sonication and encapsulated by polymers including poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL) or poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-b-PLA). Micelle properties were characterized such as solubility, drug loading, drug release and in vitro cytotoxicity against HuCTT1. AG50 was successfully loaded into both types of polymeric micelles. The best drug-polymer (D/P) ratio was 1 : 9. AG50/PCL and AG50/PLA-micelles had small particle size (36.4±5.1, 49.0±2.7 nm, respectively) and high yield (58.2±1.8, 58.8±2.9, respectively). AG50/PLA-micelles (IC50=2.42 µg/mL) showed higher cytotoxicity against HuCCT1 than AG50/PCL-micelles (IC50=4.40 µg/mL) due to the higher amount of AG50 released. Nanoencapsulation of AG50 could provide a promising development in clinical use for cholangiocarcinoma treatment.


Assuntos
Lactatos/química , Lactonas/química , Micelas , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Solubilidade , Água/química
17.
Pharm Dev Technol ; 21(4): 437-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25738423

RESUMO

BACKGROUND: Semi-synthetic andrographolide analogue (19-triphenylmethyl ether andrographolide, AG 050) is a C-19 substituted andrographolide which is the major constituent from Andrographis Paniculata Nees (Acanthaceae). The analogue has previously been reported to be highly cytotoxic against several cancer cell lines. Nevertheless, its poor water solubility limits clinical applications of this compound. OBJECTIVES: To improve the aqueous solubility and bioavailability of AG 050 by protonation and encapsulation in poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-b-PLA) polymeric micelles. MATERIALS AND METHODS: PEG-b-PLA micelle was employed as a nanocarrier for AG 050. The physicochemical properties and in vitro cytotoxicity against cholangiocarcinoma (CCA) (KKU-M213) cell line were done in this study. RESULT AND DISCUSSION: Hydrochloride salt of AG 050 (AG 050-P) greatly enhanced the solubility of this compound (15-fold). PEG-b-PLA was able to encapsulate AG 050-P in hydrophobic core with a significant increase in the amount of AG 050-P in aqueous solution (280-fold). Film sonication method provided greater results in drug-loading study as compared to micelles via solvent evaporation. In addition, the encapsulated AG 050-P exhibited sustained release pattern and excellent cytotoxicity activity against KKU-M213 with IC50 of 3.33 µM. CONCLUSION: Nanoencapsulation of AG 050-P implicated its potential development for clinical use in CCA treatment.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Diterpenos/administração & dosagem , Portadores de Fármacos/química , Lactatos/química , Polietilenoglicóis/química , Andrographis/química , Antineoplásicos Fitogênicos/química , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/efeitos dos fármacos , Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Diterpenos/química , Humanos , Micelas , Solubilidade
18.
Invest New Drugs ; 31(2): 320-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22899371

RESUMO

Topoisomerase II α enzyme plays a critical role in DNA replication process. It controls the topologic states of DNA during transcription and is essential for cell proliferation. Human DNA topoisomerase II α (hTopo II α) is a promising chemotherapeutic target for anticancer agents against a variety of cancer types. In the present study, andrographolide and its structurally modified analogues were investigated for their inhibitory activities on hTopo II α enzyme. Five out of nine andrographolide analogues potently reduced hTopo II α activity and inhibited cell proliferation in four mammalian cell lines (Hela, CHO, BCA-1 and HepG2 cells). IC50 values for cytotoxicity of analogues 3A.1, 3A.2, 3A.3, 1B and 2C were 4 to 7 µM. Structure-activity relationship studies revealed that both core structure of andrographolide and silicon based molecule of functional group were important for the inhibition of hTopo II α activity whereas position C-19 of analogues was required for anti-proliferation. In addition, the analogue 2C at 10 µM concentration inhibited hTopo II α, and induced apoptosis with nuclear fragmentation and formation of apoptotic bodies in HepG2 cells. The analogue 2C may, therefore, have a therapeutic potential as effective anticancer agent targeting the hTopo II α functions.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Diterpenos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Andrographis/química , Animais , Antígenos de Neoplasias , Neoplasias da Mama/tratamento farmacológico , Células CHO , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cricetinae , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II , Diterpenos/síntese química , Diterpenos/química , Feminino , Células HeLa , Células Hep G2 , Humanos , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química
19.
Bioorg Med Chem Lett ; 22(1): 49-52, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22154665

RESUMO

Andrographolide, the major diterpenoid lactone from Andrographis paniculata, is toxic against cancer cells. In the present study, we investigated the structure-activity relationships (SARs) of 19 andrographolide analogues which were synthesized by modification at the three hydroxyl groups. A number of the andrographolide analogues showed much higher cytotoxic activities than that of the parent compound on cancer cells including P-388, KB, COL-2, MCF-7, LU-1 and ASK cells. SAR studies of the synthetic analogues indicated that the introduction of silyl ether or triphenylmethyl ether group into C-19 of the parent compound led to increase in toxicity against the cancer cells. The 19-O-triphenylmethyl ether analogue 18 showed higher cytotoxic activity than the potent anticancer drug ellipticine, and this analogue may serve as a potential structure lead for the development of new anticancer drugs.


Assuntos
Andrographis/metabolismo , Antineoplásicos/farmacologia , Química Farmacêutica/métodos , Diterpenos/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Lactonas/farmacologia , Modelos Químicos , Relação Estrutura-Atividade
20.
Comput Struct Biotechnol J ; 20: 2784-2797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677603

RESUMO

A global crisis of coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted millions of people's lives throughout the world. In parallel to vaccine development, identifying potential antiviral agents against SARS-CoV-2 has become an urgent need to combat COVID-19. One of the most attractive drug targets for discovering anti-SARS-CoV-2 agents is the main protease (Mpro), which plays a pivotal role in the viral life cycle. This study aimed to elucidate a series of twenty-one 12-dithiocarbamate-14-deoxyandrographolide analogues as SARS-CoV-2 Mpro inhibitors using in vitro and in silico studies. These compounds were initially screened for the inhibitory activity toward SARS-CoV-2 Mpro by in vitro enzyme-based assay. We found that compounds 3 k, 3 l, 3 m and 3 t showed promising inhibitory activity against SARS-CoV-2 Mpro with >50% inhibition at 10 µM. Afterward, the binding mode of each compound in the active site of SARS-CoV-2 Mpro was explored by molecular docking. The optimum docked complexes were then chosen and subjected to molecular dynamic (MD) simulations. The MD results suggested that all studied complexes were stable along the simulation time, and most of the compounds could fit well with the SARS-CoV-2 Mpro active site, particularly at S1, S2 and S4 subsites. The per-residue decomposition free energy calculations indicated that the hot-spot residues essential for ligand binding were T25, H41, C44, S46, M49, C145, H163, M165, E166, L167, D187, R188, Q189 and T190. Therefore, the obtained information from the combined experimental and computational techniques could lead to further optimization of more specific and potent andrographolide analogues toward SARS-CoV-2 Mpro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA