RESUMO
Leukemic stem cells in chronic phase chronic myelogenous leukemia (CP-CML) are responsible for disease persistence and eventual drug resistance, most likely because they survive, expand, and are sustained through interactions with their microenvironment. Bone morphogenetic proteins 2 (BMP2) and 4 (BMP4) regulate the fate and proliferation of normal hematopoietic stem cells, as well as interactions with their niche. We show here that the intrinsic expression of members of the BMP response pathway are deregulated in CML cells with differences exhibited in mature (CD34(-)) and immature (CD34(+)) compartments. These changes are accompanied by altered functional responses of primitive leukemic cells to BMP2 and BMP4 and strong increases in soluble BMP2 and BMP4 in the CML bone marrow. Using primary cells and a cell line mimicking CP-CML, we found that myeloid progenitor expansion is driven by the exposure of immature cells overexpressing BMP receptor Ib to BMP2 and BMP4. In summary, we demonstrate that deregulation of intracellular BMP signaling in primary CP-CML samples corrupts and amplifies their response to exogenous BMP2 and BMP4, which are abnormally abundant within the tumor microenvironment. These results provide new insights with regard to leukemic stem cell biology and suggest possibilities for the development of novel therapeutic tools specifically targeting the CML niche.
Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Leucemia Mieloide de Fase Crônica/metabolismo , Leucemia Mieloide de Fase Crônica/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide de Fase Crônica/genética , Modelos Biológicos , Transdução de Sinais , Nicho de Células-Tronco , Microambiente Tumoral , Regulação para CimaRESUMO
The mechanisms of resistance to tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) often remain obscure. Analysis of patient samples during disease progression revealed the up-regulation of the oncogene TWIST-1, also measured in primary samples from TKI-resistant patients. Moreover, we found that TWIST-1 was overexpressed in CML diagnostic samples of patients who later developed cytogenetic resistance to imatinib, even those without any detectable resistance mechanism. We confirmed the up-regulation of TWIST-1 at both RNA and protein levels in imatinib-resistant cell lines, irrespective of any other resistance mechanism. Analysis with specific small interfering RNA suggested TWIST-1 involvement in the resistance phenotype. Finally, the kinetics of TWIST-1 expression during the individual medical histories of CML patients indicated that TWIST-1 expression is down-regulated by TKIs and up-regulated with TKI resistance. We hypothesize that the overexpression of the TWIST-1 oncogene represents a novel key prognostic factor potentially useful for optimizing CML management in the TKI era.
Assuntos
Antígenos CD34/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Nucleares/genética , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Proteína 1 Relacionada a Twist/genética , Benzamidas , Linhagem Celular Tumoral , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Proteína 1 Relacionada a Twist/metabolismoRESUMO
In a normal context, bone morphogenetic proteins (BMPs), members of the TGFß superfamily, are key players in adult stem cell biology. They are involved in the control of the overall functional and phenotypic properties of the stem cell population (self-renewal, proliferation, differentiation, apoptosis, quiescence, etc.). They can act directly on the stem cell or through its microenvironment, contributing to the tight balance of this system. In the tumorigenic context, alterations of the BMP signalling are involved in the deregulation of the interaction between stem cells and their microenvironment and, as such, participate to the different steps of the transformation process.
Assuntos
Células-Tronco Adultas/fisiologia , Proteínas Morfogenéticas Ósseas/fisiologia , Neoplasias/genética , Adulto , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Homeostase/genética , Homeostase/fisiologia , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologiaRESUMO
BACKGROUND: Chronic venous disease (CVD) is secondary to venous hypertension, leading to vascular inflammation and tissue changes. The impact of CVD on skin structure and barrier function is not well characterized. OBJECTIVE: We aimed to assess the characteristics of skin alterations in mild-to-moderate CVD by non-invasive techniques based on a prospective exploratory study. MATERIAL & METHODS: Female subjects (30-75 years) with CVD (Stage C2 to C4, CEAP classification) were eligible. Stage C0-C1 CVD subjects were used as controls. Women with leg surgery or a medical history that could impact the results were excluded. The skin changes on lesional (LS) and non-lesional (NLS) areas were assessed by biometric analysis including skin echography, viscoelasticity evaluation, confocal microscopy and trans epidermal water loss (TEWL) measurements. RESULTS: Thirty-four subjects were enrolled. Based on computation of 26 biometric parameters using Principal Component Analysis, a significant difference between LS and NLS zones, regardless of the CEAP class, was evidenced. C2-C4 subjects presented with dermal thickening suggesting oedema associated with decreased cell density, while no difference in skin viscoelasticity was observed compared to the C0-C1 control group. Epidermal structural modifications were associated with increased TEWL correlating with CVD severity. CONCLUSION: Skin alterations in CVD patients are detectable by non-invasive methods. These findings may help to better assess new therapeutic strategies.