Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Adv Funct Mater ; 31(43)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34924914

RESUMO

Stem cell-based therapies carry significant promise for treating human diseases. However, clinical translation of stem cell transplants for effective treatment requires precise non-destructive evaluation of the purity of stem cells with high sensitivity (<0.001% of the number of cells). Here, a novel methodology using hyperspectral imaging (HSI) combined with spectral angle mapping-based machine learning analysis is reported to distinguish differentiating human adipose-derived stem cells (hASCs) from control stem cells. The spectral signature of adipogenesis generated by the HSI method enables identifying differentiated cells at single-cell resolution. The label-free HSI method is compared with the standard techniques such as Oil Red O staining, fluorescence microscopy, and qPCR that are routinely used to evaluate adipogenic differentiation of hASCs. HSI is successfully used to assess the abundance of adipocytes derived from transplanted cells in a transgenic mice model. Further, Raman microscopy and multiphoton-based metabolic imaging is performed to provide complementary information for the functional imaging of the hASCs. Finally, the HSI method is validated using matrix-assisted laser desorption/ionization-mass spectrometry imaging of the stem cells. The study presented here demonstrates that multimodal imaging methods enable label-free identification of stem cell differentiation with high spatial and chemical resolution.

2.
Nano Lett ; 19(9): 6192-6202, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31387355

RESUMO

Recently, fluorescence-based super-resolution techniques such as stimulated emission depletion (STED) and stochastic optical reconstruction microscopy (STORM) have been developed to achieve near molecular-scale resolution. However, such a super-resolution technique for nonlinear label-free microscopy based on second harmonic generation (SHG) is lacking. Since SHG is label-free and does not involve real-energy level transitions, fluorescence-based super-resolution techniques such as STED cannot be applied to improve the resolution. In addition, due to the coherent and non-isotropic emission nature of SHG, single-molecule localization techniques based on isotropic emission of fluorescent molecule such as STORM will not be appropriate. Single molecule SHG microscopy is largely hindered due to the very weak nonlinear optical scattering cross sections of SHG scattering processes. Thus, enhancing SHG using plasmonic nanostructures and nanoantennas has recently gained much attention owing to the potential of various nanoscale geometries to tightly confine electromagnetic fields into small volumes. This confinement provides substantial enhancement of electromagnetic field in nanoscale regions of interest, which can significantly boost the nonlinear signal produced by molecules located in the plasmonic hotspots. However, to date, plasmon-enhanced SHG has been primarily applied for the measurement of bulk properties of the materials/molecules, and single molecule SHG imaging along with its orientation information has not been realized yet. Herein, we achieved simultaneous visualization and three-dimensional (3D) orientation imaging of individual rhodamine 6G (R6G) molecules in the presence of plasmonic silver nanohole arrays. SHG and two-photon fluorescence microscopy experiments together with finite-difference time-domain (FDTD) simulations revealed a ∼106-fold nonlinear enhancement factor at the hot spots on the plasmonic silver nanohole substrate, enabling detection of single molecules using SHG. The position and 3D orientation of R6G molecules were determined using the template matching algorithm by comparing the experimental data with the calculated dipole emission images. These findings could enable SHG-based single molecule detection and orientation imaging of molecules which could lead to a wide range of applications from nanophotonics to super-resolution SHG imaging of biological cells and tissues.


Assuntos
Imagem Molecular/métodos , Nanoestruturas/química , Microscopia de Geração do Segundo Harmônico/métodos , Imagem Individual de Molécula/métodos , Fluorescência , Microscopia de Fluorescência/tendências , Nanotecnologia/tendências , Prata/química , Ressonância de Plasmônio de Superfície
3.
Environ Sci Technol ; 52(5): 2973-2980, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405068

RESUMO

Upconversion luminescence is a nonlinear optical process achieved by certain engineered materials, which allows conversion of low energy photons into higher energy photons. Of particular relevance to environmental technology, lanthanide-based upconversion phosphors have appeared in dozens of publications as a tool for achieving visible light activation of wide-band gap semiconductor photocatalysts, such as TiO2, for degradation of water contaminants. Supposedly, the phosphor particles act to convert sub-band gap energy photons (e.g., solar visible light) into higher energy ultraviolet photons, thus driving catalytic aqueous contaminant degradation. Herein, however, we reexamined the photophysical properties of the popular visible-to-UV converters Y2SiO5:Pr3+ and Y3Al5O12:Er3+, and found that their efficiencies are not nearly high enough to induce catalytic degradations under the reported excitation conditions. Furthermore, our experiments indicate that the false narrative of visible-to-UV upconversion-sensitized photocatalysis likely arose due to coincidental enhancements of dye degradation via direct electron injection that occur in the presence of dielectric-semiconductor (phosphor-catalyst) interfaces. These effects were unrelated to upconversion and only occurred for dye solutions illuminated within the chromophore absorption bands. We conclude that upconversion using Pr3+ or Er3+-activated systems is not a technologically appealing mechanism for visible light photocatalysis, and provide experimental guidelines for avoiding future misinterpretation of these phenomena.


Assuntos
Elementos da Série dos Lantanídeos , Luz , Catálise , Luminescência , Semicondutores
4.
Environ Sci Technol ; 50(21): 11912-11921, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27740769

RESUMO

Germicidal UVC radiation is a highly effective, chemical-free tool for bacteria inactivation, but its application is limited to reactors and open areas that can accommodate lamps/LEDs and wiring. A relevant example of problematic bacterial colonization within UV-inaccessible confines where chemical techniques have found only limited success is biofouling of feed channels in high-pressure membrane elements for water treatment. Herein we demonstrate a unique method of generating UV internally using embedded radioluminescent (RL) particles excited by an external X-ray source. We further show that the magnitude of the emitted UV intensity and required X-ray dose rates are likely within effective and practical ranges for future application to antibiofouling technology. Assessment of three Pr3+-activated RL phosphor candidates revealed LaPO4:Pr3+ to have the most favorable luminescence properties, achieving over 2-log inactivation of E. coli in a thin water film with a 74 Gy dose of 150 kVp X-rays. The effect of UVC RL resulted in a doubling of inactivation rates over X-ray irradiation alone. Further efforts targeting membrane applications, which included X-ray penetration modeling, RO membrane UVC tolerance, and economic analysis, suggested that UVC RL shows promise for application to bacteria control in seawater RO.


Assuntos
Técnicas Bacteriológicas/métodos , Incrustação Biológica , Escherichia coli , Escherichia coli/efeitos da radiação , Raios Ultravioleta , Raios X
5.
Acc Chem Res ; 46(1): 171-80, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23092181

RESUMO

Photoluminescent nanomaterials continue to garner research attention because of their many applications. For many years, researchers have focused on quantum dots (QDs) of semiconductor nanocrystals for their excellent performance and predictable fluorescence color variations that depend on the sizes of the nanocrystals. Even with these advantages, QDs can present some major limitations, such as the use of heavy metals in the high-performance semiconductor QDs. Therefore, researchers continue to be interested in developing new QDs or related nanomaterials. Recently, various nanoscale configurations of carbon have emerged as potential new platforms in the development of brightly photoluminescent materials. As a perfect π-conjugated single sheet, graphene lacks electronic bandgaps and is not photoluminescent. Therefore, researchers have created energy bandgaps within graphene as a strategy to impart fluorescence emissions. Researchers have explored many experimental techniques to introduce bandgaps, such as cutting graphene sheets into small pieces or manipulating the π electronic network to form quantum-confined sp(2) "islands" in a graphene sheet, which apparently involve the formation or exploitation of structural defects. In fact, defects in graphene materials not only play a critical role in the creation of bandgaps for emissive electronic transitions, but also contribute directly to the bright photoluminescence emissions observed in these materials. Researchers have found similar defect-derived photoluminescence in carbon nanotubes and small carbon nanoparticles, dubbed carbon "quantum" dots or "carbon dots". However, they have not systematically examined the emissions properties of these different yet related carbon nanomaterials toward understanding their mechanistic origins. In this Account, we examine the spectroscopic features of the observed photoluminescence emissions in graphene materials. We associate the structural characteristics in the underlying graphene materials with those emission properties as a way of classifying them into two primary categories: emissions that originate from created or induced energy bandgaps in a single graphene sheet and emissions that are associated with defects in single- and/or multiple-layer graphene. We highlight the similarities and differences between the observed photoluminescence properties of graphene materials and those found in other carbon nanomaterials including carbon dots and surface defect-passivated carbon nanotubes, and we discuss their mechanistic implications.


Assuntos
Nanoestruturas/química , Nanotubos de Carbono/química , Medições Luminescentes , Tamanho da Partícula , Processos Fotoquímicos , Pontos Quânticos , Propriedades de Superfície
6.
Langmuir ; 30(28): 8631-6, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24972094

RESUMO

Carbon "quantum" dots (or carbon dots) have emerged as a new class of optical nanomaterials. Beyond the widely reported bright fluorescence emissions in carbon dots, their excellent photoinduced redox properties that resemble those found in conventional semiconductor nanostructures are equally valuable, with photon-electron conversion applications from photovoltaics to CO2 photocatalytic reduction. In this work we used gold-doped carbon dots from controlled synthesis as water-soluble catalysts for a closer examination of the visible-light photoconversion of CO2 into small organic acids, including acetic acid (for which the reduction requires many more electrons than that for formic acid) and, more interestingly, for the significantly enhanced photoconversion with higher CO2 pressures over an aqueous solution of the photocatalysts. The results demonstrate the nanoscale semiconductor-equivalent nature of carbon dots, with excellent potential in energy conversion applications.

7.
Nanotechnology ; 24(32): 325103, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23868054

RESUMO

Spherical carbon nanoparticles (carbon nanodots) with a silver shell were investigated as potential sensitizing agents. The cytotoxicity of the combination of ultraviolet radiation or x-rays with the nanodots was examined in cancer cells in vitro. The cell viability decreased following the exposure to the radiation. The carbon nanodots enhanced the radiation effects by significantly reducing the amount of surviving cells compared to that of the cells exposed only to the radiation. Carbon-core silver-shell nanodots can be proposed as a bimodal sensitization platform for biological and medicinal applications employing non-ionizing or ionizing radiation.


Assuntos
Carbono/química , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Radioterapia , Prata/química , Catálise/efeitos da radiação , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Hidrodinâmica , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Espectrometria de Fluorescência , Raios Ultravioleta
8.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679233

RESUMO

Tetrakis(dialkylamino)phosphonium (TKDAAP) compounds exhibit extraordinary base resistance, a prerequisite feature for high-performance anion exchange membranes (AEMs). It is, however, challenging to synthesize a TKDAAP compound with reactive functionality that can be used to link the cation to a polymer backbone. In this study, two TKDAAP compounds with alkyne functionality were synthesized and incorporated into an azide-modified SBS triblock copolymer backbone via Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click" chemistry. The properties of the resulting AEMs were characterized. It was found that (1) the triazole linker between the cation and the polymer backbone was stable under alkaline conditions; (2) varying the substituents of TKDAAP compounds could dramatically alter the stability; and (3) increasing the hydrophilicity of the AEM was an efficient way to enhance its ionic conductivity. Using clickable TKDAAP compounds makes it easy to combine various cations into polymer backbones with adjustable cation content, thus potentially leading to an efficient way to screen a wide variety of polyelectrolyte structures to identify the most promising candidates for high-performance AEMs.

9.
Langmuir ; 28(46): 16141-7, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23088301

RESUMO

The carbon dots in this study were small carbon nanoparticles with the particle surface functionalized by oligomeric poly(ethylene glycol) diamine molecules. Upon photoexcitation, the brightly fluorescent carbon dots in aqueous solution served the function of excellent electron donors to reduce platinum(IV) and gold(III) compounds into their corresponding metals to be deposited on the dot surface. The deposited metals even in very small amounts were found to have dramatic quenching effects on the fluorescence emission intensities, but essentially no effects on the observed fluorescence decays. The obviously exclusive near-neighbor static quenching could be attributed to the disruption of electron-hole radiative recombinations (otherwise responsible for the fluorescence emissions in carbon dots). The results provide important evidence for the availability of photogenerated electrons that could be harvested for productive purposes, which in turn supports the current mechanistic framework on fluorescence emission and photoinduced redox properties of carbon dots.

11.
ACS Omega ; 7(6): 5001-5007, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187317

RESUMO

Per- and polyfluoroalkyl substances (PFASs) pose a significant health threat to humans at trace levels. Because of its ubiquity across the globe, there have been intense efforts to rapidly quantify PFASs in the environment while also mitigating their release. This work reports an electrochemical sensor with a selective perfluorinated anion exchange ionomer (PFAEI) coating for direct sensing of perfluorooctanoic acid (PFOA)-a type of PFAS. Notably, the sensor operates without the need of redox probes and has a limit of detection around 6.51 ± 0.2 ppb (15 nM) in buffered deionized water and drinking water. By testing the sensor with different ionomer electrode coatings, it was inferred that the PFAEI favors PFOA anions over other competing anions in solution through a combination of electrostatic and van der Waal interactions.

12.
Toxicol Res ; 38(2): 205-224, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35415078

RESUMO

Approximately 7% of pregnant women in the United States use electronic-cigarette (e-cig) devices during pregnancy. There is, however, no scientific evidence to support e-cig use as being 'safe' during pregnancy. Little is known about the effects of fetal exposures to e-cig aerosols on lung alveologenesis. In the present study, we tested the hypothesis that in utero exposure to e-cig aerosol impairs lung alveologenesis and pulmonary function in neonates. Pregnant BALB/c mice were exposed 2 h a day for 20 consecutive days during gestation to either filtered air or cinnamon-flavored e-cig aerosol (36 mg/mL of nicotine). Lung tissue was collected in offspring during lung alveologenesis on postnatal day (PND) 5 and PND11. Lung function was measured at PND11. Exposure to e-cig aerosol in utero led to a significant decrease in body weights at birth which was sustained through PND5. At PND5, in utero e-cig exposures dysregulated genes related to Wnt signaling and epigenetic modifications in both females (~ 120 genes) and males (40 genes). These alterations were accompanied by reduced lung fibrillar collagen content at PND5-a time point when collagen content is close to its peak to support alveoli formation. In utero exposure to e-cig aerosol also increased the Newtonian resistance of offspring at PND11, suggesting a narrowing of the conducting airways. At PND11, in females, transcriptomic dysregulation associated with epigenetic alterations was sustained (17 genes), while WNT signaling dysregulation was largely resolved (10 genes). In males, at PND11, the expression of only 4 genes associated with epigenetics was dysregulated, while 16 Wnt related-genes were altered. These data demonstrate that in utero exposures to cinnamon-flavored e-cig aerosols alter lung structure and function and induce sex-specific molecular signatures during lung alveologenesis in neonatal mice. This may reflect epigenetic programming affecting lung disease development later in life.

13.
J Am Chem Soc ; 133(13): 4754-7, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21401091

RESUMO

Increasing atmospheric CO(2) levels have generated much concern, driving the ongoing carbon sequestration effort. A compelling CO(2) sequestration option is its photocatalytic conversion to hydrocarbons, for which the use of solar irradiation represents an ultimate solution. Here we report a new strategy of using surface-functionalized small carbon nanoparticles to harvest visible photons for subsequent charge separation on the particle surface in order to drive the efficient photocatalytic process. The aqueous solubility of the catalysts enables photoreduction under more desirable homogeneous reaction conditions. Beyond CO(2) conversion, the nanoscale carbon-based photocatalysts are also useful for the photogeneration of H(2) from water under similar conditions.


Assuntos
Dióxido de Carbono/química , Carbono/química , Luz , Nanopartículas/química , Catálise , Tamanho da Partícula , Fotoquímica , Propriedades de Superfície
14.
Chemphyschem ; 12(18): 3604-8, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21997901

RESUMO

Carbon nanomaterials have generated a tremendous amount of attention in the scientific community. While most of the research and development efforts have been on fullerenes, carbon nanotubes, and graphene sheets, carbon nanoparticles (which are often considered as impurities or unwanted complications in the other carbon nanomaterials) have recently emerged as a unique class of highly fluorescent nano-dots. However, little or no attention has been paid to potential uses of carbon nanoparticles as chromophores in photochemical reactions or for photon harvesting and photoconversion in general. In the study reported herein we demonstrate the chromophore-equivalent functions of aqueous-suspended small carbon nanoparticles in harvesting visible photons for the reductive coating of the nanoparticles with silver and gold and, as a result, the preparation of unique carbon-noble-metal core-shell nanostructures.


Assuntos
Carbono/química , Nanopartículas/química , Ouro/química , Nanopartículas Metálicas/química , Oxirredução , Processos Fotoquímicos , Fótons , Prata/química
15.
Chem Commun (Camb) ; 57(27): 3331-3334, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33659969

RESUMO

Simultaneous atom transfer radical polymerization (ATRP) and nitroxide radical coupling (NRC) seems impossible because the presence of nitroxide radicals would quench the radical polymerization immediately. However, by combining a nitroxide radical and an ATRP active halogen, a halogen group that can initiate one polymer chain by ATRP, into one functional reagent and adding this functional reagent to an ATRP system, concurrent ATRP-NRC relay polymerization was carried out successfully under proper reaction conditions. The key to success was the conjugate radical trapping and re-initiation took place repeatedly, resulting in polymers with inserted alkoxyamine linkages. This novel relay polymerization method provides numerous possibilities for macromolecular architecture/functionality tailoring by using of different functional reagents.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32755036

RESUMO

Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP-based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low-throughput. Dark-field hyperspectral imaging (DF-HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio-materials. DF-HSI also offers versatility in non-invasively monitoring microorganisms, single cell, and proteins. DF-HSI is a low-cost, label-free technique that is minimally invasive and is a viable choice for obtaining high-throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real-time. This article provides brief overview of fundamental principles of DF-HSI and its application for nanomaterials, protein-detection, single-cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.


Assuntos
Imageamento Hiperespectral , Nanopartículas , Nanoestruturas , Microscopia , Análise Espectral Raman
17.
ACS Omega ; 6(17): 11297-11306, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056285

RESUMO

Phosphate is a major nonpoint source pollutant in both the Louisiana local streams as well as in the Gulf of Mexico coastal waters. Phosphates from agricultural run-off have contributed to the eutrophication of global surface waters. Phosphate environmental dissemination and eutrophication problems are not yet well understood. Thus, this study aimed to monitor phosphate in the local watershed to help identify potential hot spots in the local community (Mississippi River, Louisiana) that may contribute to nutrient loading downstream (in the Gulf of Mexico). An electrochemical method using a physical vapor deposited cobalt microelectrode was utilized for phosphate detection using cyclic voltammetry and amperometry. The testing results were utilized to evaluate the phosphate distribution in river water and characterize the performance of the microsensor. Various characterizations, including the limit of detection, sensitivity, and reliability, were conducted by measuring the effect of interferences, including dissolved oxygen, pH, and common ions. The electrochemical sensor performance was validated by comparing the results with the standard colorimetry phosphate detection method. X-ray photoelectron spectroscopy (XPS) measurements were performed to understand the phosphate sensing mechanism on the cobalt electrode. This proof-of-concept sensor chip could be utilized for on-field monitoring using a portable, hand-held potentiostat.

18.
Front Physiol ; 12: 704401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912233

RESUMO

Matrix metalloproteinase-12 (Mmp12) is upregulated by cigarette smoke (CS) and plays a critical role in extracellular matrix remodeling, a key mechanism involved in physiological repair processes, and in the pathogenesis of emphysema, asthma, and lung cancer. While cigarette smoking is associated with the development of chronic obstructive pulmonary diseases (COPD) and lung cancer, in utero exposures to CS and second-hand smoke (SHS) are associated with asthma development in the offspring. SHS is an indoor air pollutant that causes known adverse health effects; however, the mechanisms by which in utero SHS exposures predispose to adult lung diseases, including COPD, asthma, and lung cancer, are poorly understood. In this study, we tested the hypothesis that in utero SHS exposure aggravates adult-induced emphysema, asthma, and lung cancer. Methods: Pregnant BALB/c mice were exposed from gestational days 6-19 to either 3 or 10mg/m3 of SHS or filtered air. At 10, 11, 16, or 17weeks of age, female offspring were treated with either saline for controls, elastase to induce emphysema, house-dust mite (HDM) to initiate asthma, or urethane to promote lung cancer. At sacrifice, specific disease-related lung responses including lung function, inflammation, gene, and protein expression were assessed. Results: In the elastase-induced emphysema model, in utero SHS-exposed mice had significantly enlarged airspaces and up-regulated expression of Mmp12 (10.3-fold compared to air-elastase controls). In the HDM-induced asthma model, in utero exposures to SHS produced eosinophilic lung inflammation and potentiated Mmp12 gene expression (5.7-fold compared to air-HDM controls). In the lung cancer model, in utero exposures to SHS significantly increased the number of intrapulmonary metastases at 58weeks of age and up-regulated Mmp12 (9.3-fold compared to air-urethane controls). In all lung disease models, Mmp12 upregulation was supported at the protein level. Conclusion: Our findings revealed that in utero SHS exposures exacerbate lung responses to adult-induced emphysema, asthma, and lung cancer. Our data show that MMP12 is up-regulated at the gene and protein levels in three distinct adult lung disease models following in utero SHS exposures, suggesting that MMP12 is central to in utero SHS-aggravated lung responses.

19.
Biomed Opt Express ; 12(1): 604-618, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33520391

RESUMO

We utilized collagen specific second harmonic generation (SHG) signatures coupled with correlative immunofluorescence imaging techniques to characterize collagen structural isoforms (type I and type III) in a murine model of myocardial infarction (MI). Tissue samples were imaged over a four week period using SHG, transmitted light microscopy and immunofluorescence imaging using fluorescently-labeled collagen antibodies. The post-mortem cardiac tissue imaging using SHG demonstrated a progressive increase in collagen deposition in the left ventricle (LV) post-MI. We were able to monitor structural morphology and LV remodeling parameters in terms of extent of LV dilation, stiffness and fiber dimensions in the infarcted myocardium.

20.
J Am Chem Soc ; 131(51): 18410-4, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-20028148

RESUMO

Small ( approximately 15 nm diameter), highly fluorescent conjugated polymer nanoparticles were evaluated for nanoscale 2D and 3D tracking applications. Nanoparticles composed of conjugated polymers possess high absorption cross sections, high radiative rates, and low or moderate aggregation quenching, resulting in extraordinarily high fluorescent brightness. The bright fluorescence ( approximately 200 000 photons detected per particle per 20 ms exposure) yields a theoretical particle tracking uncertainty of less than 1 nm. A lateral tracking uncertainty of 1-2 nm was determined from analysis of trajectories of fixed and freely diffusing particles. Axial (Z) position information for 3D particle tracking was obtained by defocused imaging. Nanoscale tracking of single particles in fixed cells was demonstrated, and a range of complex behaviors, possibly due to binding/unbinding dynamics, were observed.


Assuntos
Células Imobilizadas/química , Imageamento Tridimensional/métodos , Nanopartículas/análise , Polímeros/análise , Difusão , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA