Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 85: 102230, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37660480

RESUMO

The canonical appearance of the nucleus depends on constant adaptation and remodeling of the nuclear envelope in response to changing biomechanical forces and metabolic demands. Dynamic events at the nuclear envelope play a vital role in supporting key nuclear functions as well as conferring plasticity to this organelle. Moreover, imbalance of these dynamic processes is emerging as a central feature of disease etiology. This review focuses on recent advances that shed light on the myriad events at the nuclear envelope that contribute to resilience and flexibility in nuclear architecture.


Assuntos
Membrana Nuclear , Resiliência Psicológica , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo
2.
J Cell Biol ; 222(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37398994

RESUMO

As eukaryotic cells progress through cell division, the nuclear envelope (NE) membrane must expand to accommodate the formation of progeny nuclei. In Saccharomyces cerevisiae, closed mitosis allows visualization of NE biogenesis during mitosis. During this period, the SUMO E3 ligase Siz2 binds the inner nuclear membrane (INM) and initiates a wave of INM protein SUMOylation. Here, we show these events increase INM levels of phosphatidic acid (PA), an intermediate of phospholipid biogenesis, and are necessary for normal mitotic NE membrane expansion. The increase in INM PA is driven by the Siz2-mediated inhibition of the PA phosphatase Pah1. During mitosis, this results from the binding of Siz2 to the INM and dissociation of Spo7 and Nem1, a complex required for the activation of Pah1. As cells enter interphase, the process is then reversed by the deSUMOylase Ulp1. This work further establishes a central role for temporally controlled INM SUMOylation in coordinating processes, including membrane expansion, that regulate NE biogenesis during mitosis.


Assuntos
Mitose , Membrana Nuclear , Biogênese de Organelas , Proteínas de Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação
3.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34787675

RESUMO

In eukaryotes, chromatin binding to the inner nuclear membrane (INM) and nuclear pore complexes (NPCs) contributes to spatial organization of the genome and epigenetic programs important for gene expression. In mitosis, chromatin-nuclear envelope (NE) interactions are lost and then formed again as sister chromosomes segregate to postmitotic nuclei. Investigating these processes in S. cerevisiae, we identified temporally and spatially controlled phosphorylation-dependent SUMOylation events that positively regulate postmetaphase chromatin association with the NE. Our work establishes a phosphorylation-mediated targeting mechanism of the SUMO ligase Siz2 to the INM during mitosis, where Siz2 binds to and SUMOylates the VAP protein Scs2. The recruitment of Siz2 through Scs2 is further responsible for a wave of SUMOylation along the INM that supports the assembly and anchorage of subtelomeric chromatin at the INM and localization of an active gene (INO1) to NPCs during the later stages of mitosis and into G1-phase.


Assuntos
Cromatina/metabolismo , Mitose , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Sumoilação , Motivos de Aminoácidos , Proteínas de Fluorescência Verde/metabolismo , Poro Nuclear/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Telômero/metabolismo
4.
Front Genet ; 11: 174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211027

RESUMO

In addition to their role in regulating transport across the nuclear envelope, increasing evidence suggests nuclear pore complexes (NPCs) function in regulating gene expression. For example, the induction of certain genes (e.g., yeast INO1) is accompanied by their movement from the nuclear interior to NPCs. As sumoylation has been linked to the regulation of chromatin spatial organization and transcriptional activity, we investigated the role of sumoylation in the expression and NPC recruitment of the INO1 gene. We observed that induction of INO1 is accompanied by both increased and decreased sumoylation of proteins associated with specific regions along the INO1 locus. Furthermore, we show that the E3 ligase Siz2/Nfi1 is required for targeting the INO1 locus to the NPC where it interacts with the SUMO isopeptidase Ulp1. Our data suggest that this interaction is required for both the association of INO1 with the NPC and for its normal expression. These results imply that sumoylation is a key regulator of INO1 targeting to the NPC, and a cycle of sumoylation and NPC-associated desumoylation events contribute to the regulation of INO1 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA