Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0120619, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837721

RESUMO

Intracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm. The symporter YdjN, which is expected to be a new member of the L-cystine regulon, is a low affinity L-cystine transporter (Km = 1.1 µM) that is mainly involved in L-cystine uptake from outside as a nutrient. E. coli has only two L-cystine importers because ΔydjNΔyecS mutant cells are not capable of growing in the minimal medium containing L-cystine as a sole sulfur source. Another protein YecSC is the FliY-dependent L-cystine transporter that functions cooperatively with the L-cystine transporter YdeD, which exports L-cystine as reducing equivalents from the cytoplasm to the periplasm, to prevent E. coli cells from oxidative stress. The exported L-cystine can reduce the periplasmic hydrogen peroxide to water, and then generated L-cystine is imported back into the cytoplasm via the ATP-binding cassette transporter YecSC with a high affinity to L-cystine (Km = 110 nM) in a manner dependent on FliY, the periplasmic L-cystine-binding protein. The double disruption of ydeD and fliY increased cellular levels of lipid peroxides. From these findings, we propose that the hydrogen peroxide-inducible L-cystine/L-cystine shuttle system plays a role of detoxification of hydrogen peroxide before lipid peroxidation occurs, and then might specific prevent damage to membrane lipids.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cistina/metabolismo , Escherichia coli/metabolismo , Estresse Oxidativo , Transportadores de Cassetes de Ligação de ATP/genética , Adaptação Biológica , Transporte Biológico , Escherichia coli/genética , Ordem dos Genes , Genes Bacterianos , Loci Gênicos , Peróxido de Hidrogênio/metabolismo , Cinética , Peroxidação de Lipídeos , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Mutação
2.
J Biosci Bioeng ; 120(6): 666-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26188417

RESUMO

We found that Saccharomyces cerevisiae utilizes thiosulfate as a sole sulfur source. The energetically-favored thiosulfate rather than sulfate as sulfur sources is also more effective for improving growth and ethanol-production rate in S. cerevisiae due to high levels of intracellular NADPH during thiosulfate utilization.


Assuntos
Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Tiossulfatos/metabolismo , Etanol/análise , NADP/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
J Biosci Bioeng ; 119(3): 310-3, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25277519

RESUMO

We here analyzed a sulfur index of Escherichia coli using LC-MS/MS combined with thiol-specific derivatization by monobromobimane. The obtained sulfur index was then applied to evaluate the L-cysteine producer. E. coli cells overexpressing the yciW gene, a novel Cys regulon, accumulated l-homocysteine, suggesting that YciW is involved in L-methionine biosynthesis.


Assuntos
Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metionina/metabolismo , Compostos Bicíclicos com Pontes/metabolismo , Homocisteína/metabolismo , Regulon/genética , Enxofre/metabolismo , Espectrometria de Massas em Tandem
4.
PLoS One ; 8(11): e79374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223934

RESUMO

Metabolic adaptation to limited supplies of oxygen and nutrients plays a pivotal role in health and disease. Heart attack results from insufficient delivery of oxygen and nutrients to the heart, where cardiomyocytes die and cardiac fibroblasts proliferate--the latter causing scar formation, which impedes regeneration and impairs contractility of the heart. We postulated that cardiac fibroblasts survive metabolic stress by adapting their intracellular metabolism to low oxygen and nutrients, and impeding this metabolic adaptation would thwart their survival and facilitate the repair of scarred heart. Herein, we show that an anthelmintic drug, Pyrvinium pamoate, which has been previously shown to compromise cancer cell survival under glucose starvation condition, also disables cardiac fibroblast survival specifically under glucose deficient condition. Furthermore, Pyrvinium pamoate reduces scar formation and improves cardiac contractility in a mouse model of myocardial infarction. As Pyrvinium pamoate is an FDA-approved drug, our results suggest a therapeutic use of this or other related drugs to repair scarred heart and possibly other organs.


Assuntos
Anti-Helmínticos/farmacologia , Contração Muscular/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Compostos de Pirvínio/farmacologia , Animais , Anti-Helmínticos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Masculino , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Compostos de Pirvínio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA