Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(14): 4064-4071, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797254

RESUMO

We study the assembly of magnetite nanoparticles in water-based ferrofluids in wetting layers close to silicon substrates with different functionalization without and with an out-of-plane magnetic field. For particles of nominal sizes 5, 15, and 25 nm, we extract density profiles from neutron reflectivity measurements. We show that self-assembly is only promoted by a magnetic field if a seed layer is formed at the silicon substrate. Such a layer can be formed by chemisorption of activated N-hydroxysuccinimide ester-coated nanoparticles at a (3-aminopropyl)triethoxysilane functionalized surface. Less dense packing is reported for physisorption of the same particles at a piranha-treated (strongly hydrophilic) silicon wafer, and no wetting layer is found for a self-assembled monolayer of octadecyltrichlorosilane (strongly hydrophobic) at the interface. We show that once the seed layer is formed and under an out-of-plane magnetic field further wetting layers assemble. These layers become denser with time, larger magnetic fields, higher particle concentrations, and larger moment of the nanoparticles.

2.
Soft Matter ; 16(33): 7676-7684, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32804181

RESUMO

We reveal the assembly of magnetite nanoparticles of sizes 5 nm, 15 nm and 25 nm from dilute water-based ferrofluids onto an amorphous magnetic template with out-of-plane anisotropy. From neutron reflectometry experiments we extract density profiles and show that the particles self-assemble into layers at the magnetic surface. The layers are extremely stable against cleaning and rinsing of the substrate. The density of the layers is determined by and increases with the remanent magnetic moment of the particles.

3.
Langmuir ; 35(11): 3980-3986, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30767539

RESUMO

The effect of small quantities of a magnetic polymer nanocomposite (formed by surfactant Pluronic F127 @ Fe3O4 nanoparticles of 10 and 30 nm diameters) on the crystallization behavior of Pluronic F127 micelles solvated by 20% in water was investigated in the vicinity of hydrophilic and hydrophobic interfaces. Introducing magnetic nanoparticle at the core imparts magnetic properties to the polymeric micelle and increases its hydrodynamic diameter. These magnetic polymer nanocomposites act as defects in the pluronic crystal and hinder crystallization in comparison to pure Pluronic F127 micelles' behavior. The magnetic field results in a motion of the magnetic micelles and a microshearing effect. This microshearing assists in self-organization of the crystal. Addition of magnetic micelles formed using 30 nm magnetite particles shows similar crystallization behavior, however, with an overall reduced crystallinity due to their significantly larger size compared to the lattice parameter and the dimension of the interstitial cavity for an fcc structure.

4.
Nanomaterials (Basel) ; 10(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599954

RESUMO

In this article we review the process by which magnetite nanoparticles self-assemble onto solid surfaces. The focus is on neutron reflectometry studies providing information on the density and magnetization depth profiles of buried interfaces. Specific attention is given to the near-interface "wetting" layer and to examples of magnetite nanoparticles on a hydrophilic silicon crystal, one coated with (3-Aminopropyl)triethoxysilane, and finally, one with a magnetic film with out-of-plane magnetization.

5.
Polymers (Basel) ; 11(3)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30960429

RESUMO

Neutron scattering experiments are a unique tool in material science due to their sensitivity to light elements and magnetic induction. However, for kinetic studies the low brilliance at existing sources poses challenges. In the case of periodic excitations these challenges can be overcome by binning the scattering signal according to the excitation state of the sample. To advance into this direction we have performed polarised and time resolved grazing incidence neutron scattering measurements on an aqueous solution of the polymer F127 mixed with magnetic nano-particles. Magnetic nano-composites like this provide magnetically tuneable properties of the polymer crystal as well as magnetic meta-crystals. Even though the grazing incidence small angle scattering and polarised signals are too weak to be evaluated at this stage we demonstrate that such experiments are feasible. Moreover, we show that the intensity of the 111 Bragg peak of the fcc micellar crystal depends on the actual shear rate, with the signal being maximised when the shear rate is lowest (and vice-versa).

6.
ACS Appl Mater Interfaces ; 10(5): 5050-5060, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29299907

RESUMO

This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers. For layers in which the NPs are more free to rotate, the easy axis of the NP can readily orient along the field direction. In more dense packing, free rotation of the NPs is hampered, and the NP ensembles likely build up quasi-domain states to minimize energy, which leads to lower magnetization in those layers. Detailed analysis of polarized neutron reflectometry data together with model calculations of the arrangement of the NPs within the layers and input from small-angle scattering measurements provide full characterization of the core/shell NP dimensions, degree of chaining, arrangement of the NPs within the different layers, and magnetization depth profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA