Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nature ; 583(7814): E14, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32533095

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 582(7812): 395-398, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494010

RESUMO

Neuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans1,2 may contribute to this failure in translation. We tested three independent neuroprotective approaches-normobaric hyperoxia, the free radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the N-methyl-D-aspartic acid (NMDA) antagonist MK801-in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in 'active-phase' than in 'inactive-phase' rodent neurons. αPBN and MK801 reduced neuronal death only in 'inactive-phase' neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Neurônios/patologia , Neuroproteção , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/prevenção & controle , Glucose/deficiência , Humanos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/fisiopatologia , Pesquisa Translacional Biomédica , Falha de Tratamento
3.
PLoS Biol ; 20(10): e3001440, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301995

RESUMO

The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Consumo de Oxigênio , Animais , Camundongos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Córtex Cerebral/metabolismo , Encéfalo/fisiologia , Circulação Cerebrovascular
4.
Stroke ; 54(4): 1110-1119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36876481

RESUMO

BACKGROUND: Spreading depolarizations (SDs) are believed to contribute to injury progression and worsen outcomes in focal cerebral ischemia because exogenously induced SDs have been associated with enlarged infarct volumes. However, previous studies used highly invasive methods to trigger SDs that can directly cause tissue injury (eg, topical KCl) and confound the interpretation. Here, we tested whether SDs indeed enlarge infarcts when induced via a novel, noninjurious method using optogenetics. METHODS: Using transgenic mice expressing channelrhodopsin-2 in neurons (Thy1-ChR2-YFP), we induced 8 optogenetic SDs to trigger SDs noninvasively at a remote cortical location in a noninjurious manner during 1-hour distal microvascular clip or proximal an endovascular filament occlusion of the middle cerebral artery. Laser speckle imaging was used to monitor cerebral blood flow. Infarct volumes were then quantified at 24 or 48 hours. RESULTS: Infarct volumes in the optogenetic SD arm did not differ from the control arm in either distal or proximal middle cerebral artery occlusion, despite a 6-fold and 4-fold higher number of SDs, respectively. Identical optogenetic illumination in wild-type mice did not affect the infarct volume. Full-field laser speckle imaging showed that optogenetic stimulation did not affect the perfusion in the peri-infarct cortex. CONCLUSIONS: Altogether, these data show that SDs induced noninvasively using optogenetics do not worsen tissue outcomes. Our findings compel a careful reexamination of the notion that SDs are causally linked to infarct expansion.


Assuntos
Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Optogenética/métodos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Infarto da Artéria Cerebral Média , Camundongos Transgênicos
5.
Stroke ; 54(10): 2640-2651, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37610105

RESUMO

BACKGROUND: Spreading depolarizations (SDs) occur in all types of brain injury and may be associated with detrimental effects in ischemic stroke and subarachnoid hemorrhage. While rapid hematoma growth during intracerebral hemorrhage triggers SDs, their role in intracerebral hemorrhage is unknown. METHODS: We used intrinsic optical signal and laser speckle imaging, combined with electrocorticography, to investigate the effects of SD on hematoma growth during the hyperacute phase (0-4 hours) after intracortical collagenase injection in mice. Hematoma expansion, SDs, and cerebral blood flow were simultaneously monitored under normotensive and hypertensive conditions. RESULTS: Spontaneous SDs erupted from the vicinity of the hematoma during rapid hematoma growth. We found that hematoma growth slowed down by >60% immediately after an SD. This effect was even stronger in hypertensive animals with faster hematoma growth. To establish causation, we exogenously induced SDs (every 30 minutes) at a remote site by topical potassium chloride application and found reduced hematoma growth rate and final hemorrhage volume (18.2±5.8 versus 10.7±4.1 mm3). Analysis of cerebral blood flow using laser speckle flowmetry revealed that suppression of hematoma growth by spontaneous or induced SDs coincided and correlated with the characteristic oligemia in the wake of SD, implicating the vasoconstrictive effect of SD as one potential mechanism of action. CONCLUSIONS: Our findings reveal that SDs limit hematoma growth during the early hours of intracerebral hemorrhage and decrease final hematoma volume.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hemorragia Subaracnóidea , Camundongos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hemorragia Subaracnóidea/complicações , Eletrocorticografia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/complicações , Hematoma/diagnóstico por imagem , Hematoma/complicações
6.
Brain ; 145(1): 194-207, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34245240

RESUMO

Spreading depolarizations are highly prevalent and spatiotemporally punctuated events worsening the outcome of brain injury. Trigger factors are poorly understood but may be linked to sudden worsening in supply-demand mismatch in compromised tissue. Sustained or transient elevations in intracranial pressure are also prevalent in the injured brain. Here, using a mouse model of large hemispheric ischaemic stroke, we show that mild and brief intracranial pressure elevations (20 or 30 mmHg for just 3 min) potently trigger spreading depolarizations in ischaemic penumbra (4-fold increase in spreading depolarization occurrence). We also show that 30 mmHg intracranial pressure spikes as brief as 30 s are equally effective. In contrast, sustained intracranial pressure elevations to the same level for 30 min do not significantly increase the spreading depolarization rate, suggesting that an abrupt disturbance in the steady state equilibrium is required to trigger a spreading depolarization. Laser speckle flowmetry consistently showed a reduction in tissue perfusion, and two-photon pO2 microscopy revealed a drop in venous pO2 during the intracranial pressure spikes suggesting increased oxygen extraction fraction, and therefore, worsening supply-demand mismatch. These haemodynamic changes during intracranial pressure spikes were associated with highly reproducible increases in extracellular potassium levels in penumbra. Consistent with the experimental data, a higher rate of intracranial pressure spikes was associated with spreading depolarization clusters in a retrospective series of patients with aneurysmal subarachnoid haemorrhage with strong temporal correspondence. Altogether, our data show that intracranial pressure spikes, even when mild and brief, are capable of triggering spreading depolarizations. Aggressive prevention of intracranial pressure spikes may help reduce spreading depolarization occurrence and improve outcomes after brain injury.


Assuntos
Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Acidente Vascular Cerebral , Isquemia Encefálica/complicações , Humanos , Pressão Intracraniana , Estudos Retrospectivos
7.
Stroke ; 53(7): 2369-2376, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35656825

RESUMO

BACKGROUND: Subcortical white matter lesions are exceedingly common in cerebral small vessel disease and lead to significant cumulative disability without an available treatment. Here, we tested a rho-kinase inhibitor on functional recovery after focal white matter injury. METHODS: A focal corpus callosum lesion was induced by stereotactic injection of N5-(1-iminoethyl)-L-ornithine in mice. Fasudil (10 mg/kg) or vehicle was administered daily for 2 weeks, starting one day after lesion induction. Resting-state functional connectivity and grid walk performance were studied longitudinally, and lesion volumes were determined at one month. RESULTS: Resting-state interhemispheric functional connectivity significantly recovered between days 1 and 14 in the fasudil group (P<0.001), despite worse initial connectivity loss than vehicle before treatment onset. Grid walk test revealed an increased number of foot faults in the vehicle group compared with baseline, which persisted for at least 4 weeks. In contrast, the fasudil arm did not show an increase in foot faults and had smaller lesions at 4 weeks. Immunohistochemical examination of reactive astrocytosis, synaptic density, and mature oligodendrocytes did not reveal a significant difference between treatment arms. CONCLUSIONS: These data show that delayed fasudil posttreatment improves functional outcomes after a focal subcortical white matter lesion in mice. Future work will aim to elucidate the mechanisms.


Assuntos
Leucoaraiose , Substância Branca , Animais , Corpo Caloso , Humanos , Camundongos , Recuperação de Função Fisiológica , Quinases Associadas a rho
8.
Cereb Cortex ; 31(11): 4958-4969, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34037216

RESUMO

The corpus callosum is the largest white matter tract and critical for interhemispheric connectivity. Unfortunately, neurocognitive deficits after experimental white matter lesions are subtle and variable, limiting their translational utility. We examined resting state functional connectivity (RSFC) as a surrogate after a focal lesion in the lateral corpus callosum induced by stereotaxic injection of L-NIO in mice. RSFC was performed via optical intrinsic signal imaging through intact skull before and on days 1 and 14 after injection, using interhemispheric homotopic and seed-based temporal correlation maps. We measured the lesion volumes at 1 month in the same cohort. L-NIO induced focal lesions in the corpus callosum. Interhemispheric homotopic connectivity decreased by up to 50% 24 h after L-NIO, partially sparing the visual cortex. All seeds showed loss of connectivity to the contralateral hemisphere. Moreover, ipsilesional motor and visual cortices lost connectivity within the same hemisphere. Sham-operated mice did not show any lesion or connectivity changes. RSFC imaging reliably detects acute disruption of long interhemispheric and intrahemispheric connectivity after a corpus callosum lesion in mice. This noninvasive method can be a functional surrogate to complement neurocognitive testing in both therapeutic and recovery studies after white matter injury.


Assuntos
Substância Branca , Animais , Corpo Caloso/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagem Óptica , Substância Branca/diagnóstico por imagem
9.
Neurocrit Care ; 37(Suppl 1): 123-132, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34981426

RESUMO

BACKGROUND: Cortical spreading depolarizations (CSDs) are associated with worse outcomes in patients with aneurysmal subarachnoid hemorrhage (SAH). Animal models are required to assess whether CSDs can worsen outcomes or are an epiphenomenon; however, little is known about the presence of CSDs in existing animal models. Therefore, we designed a study to determine whether CSDs occur in a mouse model of SAH. METHODS: A total of 36 mice were included in the study. We used the anterior prechiasmatic injection model of SAH under isoflurane anesthesia. A needle was inserted through the mouse olfactory bulb with the point terminating at the base of the skull, and arterial blood or saline (100 µl) was injected over 10 s. Changes in cerebral blood volume over the entire dorsal cortical surface were assessed with optical intrinsic signal imaging for 5 min following needle insertion. RESULTS: CSDs occurred in 100% of mice in the hemisphere ipsilateral to olfactory bulb needle insertion (CSD1). Saline-injected mice had 100% survival (n = 10). Blood-injected mice had 88% survival (n = 23 of 26). A second, delayed, CSD ipsilateral to CSD1 occurred in 31% of blood-injected mice. An increase in the time interval between CSD1 and blood injection was associated with the occurrence of a second CSD in blood-injected mice (mean intervals 26.4 vs. 72.7 s, p < 0.0001, n = 18 and 8). We observed one blood-injected animal with a second CSD in the contralateral hemisphere and observed terminal CSDs in mice that died following SAH injection. CONCLUSIONS: The prechiasmatic injection model of SAH includes CSDs that occur at the time of needle insertion. The occurrence of subsequent CSDs depends on the timing between CSD1 and blood injection. The mouse prechiasmatic injection model could be considered an SAH plus CSD model of the disease. Further work is needed to determine the effect of multiple CSDs on outcomes following SAH.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hemorragia Subaracnóidea , Animais , Córtex Cerebral , Circulação Cerebrovascular , Modelos Animais de Doenças , Camundongos , Hemorragia Subaracnóidea/complicações
10.
Stroke ; 52(6): 2180-2190, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33940951

RESUMO

Circadian biology modulates almost all aspects of mammalian physiology, disease, and response to therapies. Emerging data suggest that circadian biology may significantly affect the mechanisms of susceptibility, injury, recovery, and the response to therapy in stroke. In this review/perspective, we survey the accumulating literature and attempt to connect molecular, cellular, and physiological pathways in circadian biology to clinical consequences in stroke. Accounting for the complex and multifactorial effects of circadian rhythm may improve translational opportunities for stroke diagnostics and therapeutics.


Assuntos
Ritmo Circadiano/fisiologia , Mediadores da Inflamação/fisiologia , Acoplamento Neurovascular/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Animais , Ensaios Clínicos como Assunto/métodos , Humanos , Acidente Vascular Cerebral/diagnóstico
11.
Stroke ; 51(8): 2526-2535, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640946

RESUMO

BACKGROUND AND PURPOSE: Spreading depolarizations (SDs) are recurrent and ostensibly spontaneous depolarization waves that may contribute to infarct progression after stroke. Somatosensory activation of the metastable peri-infarct tissue triggers peri-infarct SDs at a high rate. METHODS: We directly measured the functional activation threshold to trigger SDs in peri-infarct hot zones using optogenetic stimulation after distal middle cerebral artery occlusion in Thy1-ChR2-YFP mice. RESULTS: Optogenetic activation of peri-infarct tissue triggered SDs at a strikingly high rate (64%) compared with contralateral homotopic cortex (8%; P=0.004). Laser speckle perfusion imaging identified a residual blood flow of 31±2% of baseline marking the metastable tissue with a propensity to develop SDs. CONCLUSIONS: Our data reveal a spatially distinct increase in SD susceptibility in peri-infarct tissue where physiological levels of functional activation are capable of triggering SDs. Given the potentially deleterious effects of peri-infarct SDs, the effect of sensory overstimulation in hyperacute stroke should be examined more carefully.


Assuntos
Infarto Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Optogenética/métodos , Animais , Infarto Cerebral/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
Cereb Cortex ; 29(3): 1150-1161, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425263

RESUMO

Cortical spreading depolarization (SD) is the electrophysiological event underlying migraine aura, and a critical contributor to secondary damage after brain injury. Experimental models of SD have been used for decades in migraine and brain injury research; however, they are highly invasive and often cause primary tissue injury, diminishing their translational value. Here we present a non-invasive method to trigger SDs using light-induced depolarization in transgenic mice expressing channelrhodopsin-2 in neurons (Thy1-ChR2-YFP). Focal illumination (470 nm, 1-10 mW) through intact skull using an optical fiber evokes power-dependent steady extracellular potential shifts and local elevations of extracellular [K+] that culminate in an SD when power exceeds a threshold. Using the model, we show that homozygous mice are significantly more susceptible to SD (i.e., lower light thresholds) than heterozygous ChR2 mice. Moreover, we show SD susceptibility differs significantly among cortical divisions (motor, whisker barrel, sensory, visual, in decreasing order of susceptibility), which correlates with relative channelrhodopsin-2 expression. Furthermore, the NMDA receptor antagonist MK-801 blocks the transition to SD without diminishing extracellular potential shifts. Altogether, our data show that the optogenetic SD model is highly suitable for examining physiological or pharmacological modulation of SD in acute and longitudinal studies.


Assuntos
Córtex Cerebral/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Neurônios/fisiologia , Optogenética , Animais , Feminino , Masculino , Camundongos Transgênicos
13.
Magn Reson Med ; 81(6): 3865-3874, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30659643

RESUMO

PURPOSE: The primary goal of this study was to estimate the value of ß , the exponent in the power law relating changes of the transverse relaxation rate and intra-extravascular local magnetic susceptibility differences as ΔR2∗∝(Δχ)ß . The secondary objective was to evaluate any differences that might exist in the value of ß obtained using a deoxyhemoglobin-weighted Δχ distribution versus a constant Δχ distribution assumed in earlier computations. The third objective was to estimate the value of ß that is relevant for methods based on susceptibility contrast agents with a concentration of Δχ higher than that used for BOLD fMRI calculations. METHODS: Our recently developed model of real microvascular anatomical networks is used to extend the original simplified Monte-Carlo simulations to compute ß from the first principles. RESULTS: Our results show that ß=1 for most BOLD fMRI measurements of real vascular networks, as opposed to earlier predictions of ß=1 .5 using uniform Δχ distributions. For perfusion or fMRI methods based on contrast agents, which generate larger values for Δχ , ß=1 for B0≤ 9.4 T, whereas at 14 T ß can drop below 1 and the variation across subjects is large, indicating that a lower concentration of contrast agent with a lower value of Δχ is desired for experiments at high B0 . CONCLUSION: These results improve our understanding of the relationship between R2* and the underlying microvascular properties. The findings will help to infer the cerebral metabolic rate of oxygen and cerebral blood volume from BOLD and perfusion MRI, respectively.


Assuntos
Imageamento por Ressonância Magnética/métodos , Microvasos/diagnóstico por imagem , Imagem de Perfusão/métodos , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Meios de Contraste , Camundongos , Camundongos Endogâmicos C57BL , Modelos Cardiovasculares , Método de Monte Carlo
14.
Opt Express ; 27(20): 28022-28035, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684560

RESUMO

Non-degenerate two-photon excitation (ND-TPE) has been explored in two-photon excitation microscopy. However, a systematic study of the efficiency of ND-TPE to guide the selection of fluorophore excitation wavelengths is missing. We measured the relative non-degenerate two-photon absorption cross-section (ND-TPACS) of several commonly used fluorophores (two fluorescent proteins and three small-molecule dyes) and generated 2-dimensional ND-TPACS spectra. We observed that the shape of a ND-TPACS spectrum follows that of the corresponding degenerate two-photon absorption cross-section (D-TPACS) spectrum, but is higher in magnitude. We found that the observed enhancements are higher than theoretical predictions.

15.
Opt Lett ; 44(20): 4989-4992, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613246

RESUMO

Scattering is one of the main issues that limit the imaging depth in deep tissue optical imaging. To characterize the role of scattering, we have developed a forward model based on the beam propagation method and established the link between the macroscopic optical properties of the media and the statistical parameters of the phase masks applied to the wavefront. Using this model, we have analyzed the degradation of the point-spread function of the illumination beam in the transition regime from ballistic to diffusive light transport. Our method provides a wave-optic simulation toolkit to analyze the effects of scattering on image quality degradation in scanning microscopy. Our open-source implementation is available at https://github.com/BUNPC/Beam-Propagation-Method.

16.
Neuroimage ; 149: 436-445, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043909

RESUMO

Magnetic resonance fingerprinting (MRF) was recently proposed as a novel strategy for MR data acquisition and analysis. A variant of MRF called vascular MRF (vMRF) followed, that extracted maps of three parameters of physiological importance: cerebral oxygen saturation (SatO2), mean vessel radius and cerebral blood volume (CBV). However, this estimation was based on idealized 2-dimensional simulations of vascular networks using random cylinders and the empirical Bloch equations convolved with a diffusion kernel. Here we focus on studying the vascular MR fingerprint using real mouse angiograms and physiological values as the substrate for the MR simulations. The MR signal is calculated ab initio with a Monte Carlo approximation, by tracking the accumulated phase from a large number of protons diffusing within the angiogram. We first study the identifiability of parameters in simulations, showing that parameters are fully estimable at realistically high signal-to-noise ratios (SNR) when the same angiogram is used for dictionary generation and parameter estimation, but that large biases in the estimates persist when the angiograms are different. Despite these biases, simulations show that differences in parameters remain estimable. We then applied this methodology to data acquired using the GESFIDE sequence with SPIONs injected into 9 young wild type and 9 old atherosclerotic mice. Both the pre injection signal and the ratio of post-to-pre injection signals were modeled, using 5-dimensional dictionaries. The vMRF methodology extracted significant differences in SatO2, mean vessel radius and CBV between the two groups, consistent across brain regions and dictionaries. Further validation work is essential before vMRF can gain wider application.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Aterosclerose/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Angiografia Cerebral , Camundongos , Camundongos Endogâmicos C57BL
17.
Microcirculation ; 24(4)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27987383

RESUMO

OBJECTIVE: In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. METHODS: We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. RESULTS: We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than 500 unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. CONCLUSION: Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large data sets acquired as part of microvascular imaging studies.


Assuntos
Teorema de Bayes , Hemodinâmica/fisiologia , Microcirculação/fisiologia , Angioscopia Microscópica/métodos , Modelos Biológicos , Modelos Estatísticos , Animais , Córtex Cerebral/irrigação sanguínea , Camundongos , Microvasos/anatomia & histologia , Microvasos/fisiologia , Ratos , Fluxo Sanguíneo Regional/fisiologia , Circulação Esplâncnica/fisiologia
18.
Adv Exp Med Biol ; 977: 149-153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685439

RESUMO

Key to the understanding of the principles of physiological and structural acclimatization to changes in the balance between energy supply (represented by substrate and oxygen delivery, and mitochondrial oxidative phosphorylation) and energy demand (initiated by neuronal activity) is to determine the controlling variables, how they are sensed and the mechanisms initiated to maintain the balance. The mammalian brain depends completely on continuous delivery of oxygen to maintain its function. We hypothesized that tissue oxygen is the primary sensed variable. In this study two-photon phosphorescence lifetime microscopy (2PLM) was used to determine and define the tissue oxygen tension field within the cerebral cortex of mice to a cortical depth of between 200-250 µm under normoxia and acute hypoxia (FiO2 = 0.10). High-resolution images can provide quantitative distributions of oxygen and intercapillary oxygen gradients. The data are best appreciated by quantifying the distribution histogram that can then be used for analysis. For example, in the brain cortex of a mouse, at a depth of 200 µm, tissue oxygen tension was mapped and the distribution histogram was compared under normoxic and mild hypoxic conditions. This powerful method can provide for the first time a description of the delivery and availability of brain oxygen in vivo.


Assuntos
Encéfalo/metabolismo , Hipóxia/metabolismo , Medições Luminescentes/métodos , Oxigênio/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Química Encefálica , Mapeamento Encefálico/métodos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Hipóxia/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Oxigênio/análise , Pressão Parcial
20.
J Neurosci ; 35(8): 3663-75, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716864

RESUMO

The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences.


Assuntos
Encéfalo/irrigação sanguínea , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Cardiovasculares , Animais , Encéfalo/fisiologia , Corantes Fluorescentes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA