Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cancer Sci ; 115(6): 1936-1947, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590281

RESUMO

The immunoglobulin superfamily (IgSF) is one of the largest families of cell-surface molecules involved in various cell-cell interactions, including cancer-stromal interactions. In this study, we undertook a comprehensive RT-PCR-based screening for IgSF molecules that promote experimental lung metastasis in mice. By comparing the expression of 325 genes encoding cell-surface IgSF molecules between mouse melanoma B16 cells and its highly metastatic subline, B16F10 cells, we found that expression of the immunoglobulin superfamily member 3 gene (Igsf3) was significantly enhanced in B16F10 cells than in B16 cells. Knockdown of Igsf3 in B16F10 cells significantly reduced lung metastasis following intravenous injection into C57BL/6 mice. IGSF3 promoted adhesion of B16F10 cells to vascular endothelial cells and functioned as a homophilic cell adhesion molecule between B16F10 cells and vascular endothelial cells. Notably, the knockdown of IGSF3 in either B16F10 cells or vascular endothelial cells suppressed the transendothelial migration of B16F10 cells. Moreover, IGSF3 knockdown suppressed the extravasation of B16F10 cells into the lungs after intravenous injection. These results suggest that IGSF3 promotes the metastatic potential of B16F10 cells in the lungs by facilitating their adhesion to vascular endothelial cells.


Assuntos
Endotélio Vascular , Neoplasias Pulmonares , Melanoma Experimental , Animais , Humanos , Camundongos , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Técnicas de Silenciamento de Genes , Imunoglobulinas/metabolismo , Imunoglobulinas/genética , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL
2.
J Biol Chem ; 297(5): 101304, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655613

RESUMO

Mint3 is known to enhance aerobic ATP production, known as the Warburg effect, by binding to FIH-1. Since this effect is considered to be beneficial for cancer cells, the interaction is a promising target for cancer therapy. However, previous research has suggested that the interacting region of Mint3 with FIH-1 is intrinsically disordered, which makes investigation of this interaction challenging. Therefore, we adopted thermodynamic and structural studies in solution to clarify the structural and thermodynamical changes of Mint3 binding to FIH-1. First, using a combination of circular dichroism, nuclear magnetic resonance, and hydrogen/deuterium exchange-mass spectrometry (HDX-MS), we confirmed that the N-terminal half, which is the interacting part of Mint3, is mostly disordered. Next, we revealed a large enthalpy and entropy change in the interaction of Mint3 using isothermal titration calorimetry (ITC). The profile is consistent with the model that the flexibility of disordered Mint3 is drastically reduced upon binding to FIH-1. Moreover, we performed a series of ITC experiments with several types of truncated Mint3s, an effective approach since the interacting part of Mint3 is disordered, and identified amino acids 78 to 88 as a novel core site for binding to FIH-1. The truncation study of Mint3 also revealed the thermodynamic contribution of each part of Mint3 to the interaction with FIH-1, where the core sites contribute to the affinity (ΔG), while other sites only affect enthalpy (ΔH), by forming noncovalent bonds. This insight can serve as a foothold for further investigation of intrinsically disordered regions (IDRs) and drug development for cancer therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Intrinsicamente Desordenadas/química , Oxigenases de Função Mista/química , Proteínas Repressoras/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Termodinâmica
3.
Cancer Sci ; 113(5): 1669-1678, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35213073

RESUMO

The initial step of organ infiltration of malignant cells is the interaction with host vascular endothelial cells, which is often mediated by specific combinations of cell adhesion molecules. Cell adhesion molecule 1 (CADM1) is overexpressed in adult T-cell leukemia/lymphoma (ATL) and provides a cell-surface diagnostic marker. CADM1 promotes the adhesion of ATL cells to vascular endothelial cells and multiple organ infiltration in mice. However, its binding partner on host cells has not yet been identified. In this study, we show that CADM1 promotes transendothelial migration of ATL cells in addition to the adhesion to vascular endothelial cells. Moreover, CADM1 enhances liver infiltration of mouse T-cell lymphoma cells, EL4, after tail vein injection, whereas a CADM1 mutant lacking adhesive activity did not. Among the known CADM1-binding proteins expressed in primary endothelial cells, only CADM1 and CADM4 could induce morphological extension of ATL cells when plated onto glass coated with these proteins. Furthermore, CADM1-mediated liver infiltration of EL4 cells was canceled in conventional and vascular endothelium-specific Cadm1 knockout mice, whereas it was not canceled in Cadm4 knockout mice. These results suggest that CADM1 on host vascular endothelial cells is required for organ infiltration of ATL and other T-cell lymphomas expressing CADM1.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Endotélio Vascular , Linfoma de Células T , Animais , Adesão Celular , Molécula 1 de Adesão Celular/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Linfoma de Células T/genética , Camundongos
4.
Cancer Sci ; 113(4): 1182-1194, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35133065

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is an age-associated phenomenon characterized by clonal expansion of blood cells harboring somatic mutations in hematopoietic genes, including DNMT3A, TET2, and ASXL1. Clinical evidence suggests that CHIP is highly prevalent and associated with poor prognosis in solid-tumor patients. However, whether blood cells with CHIP mutations play a causal role in promoting the development of solid tumors remained unclear. Using conditional knock-in mice that express CHIP-associated mutant Asxl1 (Asxl1-MT), we showed that expression of Asxl1-MT in T cells, but not in myeloid cells, promoted solid-tumor progression in syngeneic transplantation models. We also demonstrated that Asxl1-MT-expressing blood cells accelerated the development of spontaneous mammary tumors induced by MMTV-PyMT. Intratumor analysis of the mammary tumors revealed the reduced T-cell infiltration at tumor sites and programmed death receptor-1 (PD-1) upregulation in CD8+ T cells in MMTV-PyMT/Asxl1-MT mice. In addition, we found that Asxl1-MT induced T-cell dysregulation, including aberrant intrathymic T-cell development, decreased CD4/CD8 ratio, and naïve-memory imbalance in peripheral T cells. These results indicate that Asxl1-MT perturbs T-cell development and function, which contributes to creating a protumor microenvironment for solid tumors. Thus, our findings raise the possibility that ASXL1-mutated blood cells exacerbate solid-tumor progression in ASXL1-CHIP carriers.


Assuntos
Hematopoiese Clonal , Neoplasias , Proteínas Repressoras , Animais , Linfócitos T CD8-Positivos/metabolismo , Hematopoiese Clonal/genética , Hematopoese/genética , Camundongos , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Microambiente Tumoral
5.
Histochem Cell Biol ; 158(5): 497-511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35854144

RESUMO

We previously reported that the membrane skeletal protein 4.1G in the peripheral nervous system transports membrane palmitoylated protein 6 (MPP6), which interacts with the synaptic scaffolding protein Lin7 and cell adhesion molecule 4 (CADM4) in Schwann cells that form myelin. In the present study, we investigated the localization of and proteins related to MPP2, a highly homologous family protein of MPP6, in the cerebellum of the mouse central nervous system, in which neurons are well organized. Immunostaining for MPP2 was observed at cerebellar glomeruli (CG) in the granular layer after postnatal day 14. Using the high-resolution Airyscan mode of a confocal laser-scanning microscope, MPP2 was detected as a dot pattern and colocalized with CADM1 and Lin7, recognized as small ring/line patterns, as well as with calcium/calmodulin-dependent serine protein kinase (CASK), NMDA glutamate receptor 1 (GluN1), and M-cadherin, recognized as dot patterns, indicating the localization of MPP2 in the excitatory postsynaptic region and adherens junctions of granule cells. An immunoprecipitation analysis revealed that MPP2 formed a molecular complex with CADM1, CASK, M-cadherin, and Lin7. Furthermore, the Lin7 staining pattern showed small rings surrounding mossy fibers in wild-type CG, while it changed to the dot/spot pattern inside small rings detected with CADM1 staining in MPP2-deficient CG. These results indicate that MPP2 influences the distribution of Lin7 to synaptic cell membranes at postsynaptic regions in granule cells at CG, at which electric signals enter the cerebellum.


Assuntos
Cerebelo , Proteínas de Membrana , Animais , Camundongos , Membrana Celular/química , Cerebelo/química , Guanilato Quinases , Proteínas de Membrana/metabolismo , Sistema Nervoso Periférico/metabolismo
6.
Nephrol Dial Transplant ; 35(4): 576-586, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495893

RESUMO

BACKGROUND: Tubulointerstitial fibrosis is a hallmark of chronic kidney disease (CKD), and is initiated by tubular epithelial cell (TEC) injury. Hypoxia promotes tubular cell death, fibrosis and CKD progression. Munc18-1-interacting protein 3 (Mint3) is a molecule that activates hypoxia-inducible factors (HIFs) by binding and suppressing factor inhibiting HIF-1 (FIH). However, the role of Mint3 in tubulointerstitial fibrosis remains unknown. METHODS: We induced fibrosis of the kidney after unilateral ischemia-reperfusion injury (uIRI) in Mint3-knockout and littermate wild-type mice. The duration of ischemia was 23 min and the kidneys were harvested at 24 h and 7 days after ischemia-reperfusion. The function of Mint3 was further investigated by using mouse cortical tubular (MCT) cells, which were treated with Mint3 and/or FIH small interfering RNA and exposed to normoxia or hypoxia. RESULTS: Knockout of Mint3 did not affect the acute injury induced by uIRI, but exacerbated the tubulointerstitial fibrosis, accompanied by an increase in TEC apoptosis. Consistently, hypoxia-induced apoptosis of MCT cells was aggravated by Mint3 knockdown. Unexpectedly, the additional knockdown of FIH did not suppress the increase in apoptosis by Mint3 knockdown, demonstrating the irrelevance of the FIH/HIF pathway. Therefore, we next focused on nuclear factor (NF)-κB, which has an anti-apoptotic role. Indeed, not only the expression of the inhibitory NF-κB p50 but also the DNA-binding activity of p50/p50 homodimer was increased by knockdown of Mint3 in the TECs, along with the decreased expressions of the NF-κB-targeted anti-apoptotic genes. An increase in NF-κB p50 was also confirmed in Mint3-knockout kidneys. CONCLUSIONS: Mint3 in epithelial cells protects the cells from apoptosis by up-regulating anti-apoptotic effects of NF-κB, leading to fibrosis suppression. This new pathophysiology of tubulointerstitial fibrosis could be a target of future therapy for CKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Apoptose , Células Epiteliais/patologia , Fibrose/prevenção & controle , NF-kappa B/metabolismo , Nefrite Intersticial/prevenção & controle , Traumatismo por Reperfusão/complicações , Animais , Células Epiteliais/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Nefrite Intersticial/etiologia , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia
7.
Proc Natl Acad Sci U S A ; 114(22): E4416-E4424, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507122

RESUMO

Cancer metastasis is intricately orchestrated by both cancer and normal cells, such as endothelial cells and macrophages. Monocytes/macrophages, which are often co-opted by cancer cells and promote tumor malignancy, acquire more than half of their energy from glycolysis even during normoxic conditions. This glycolytic activity is maintained during normoxia by the functions of hypoxia inducible factor 1 (HIF-1) and its activator APBA3. The mechanism by which APBA3 inhibition partially suppresses macrophage function and affects cancer metastasis is of interest in view of avoidance of the adverse effects of complete suppression of macrophage function during therapy. Here, we report that APBA3-deficient mice show reduced metastasis, with no apparent effect on primary tumor growth. APBA3 deficiency in inflammatory monocytes, which strongly express the chemokine receptor CCR2 and are recruited toward chemokine CCL2 from metastatic sites, hampers glycolysis-dependent chemotaxis of cells toward metastatic sites and inhibits VEGFA expression, similar to the effects observed with HIF-1 deficiency. Host APBA3 induces VEGFA-mediated E-selectin expression in the endothelial cells of target organs, thereby promoting extravasation of cancer cells and micrometastasis formation. Administration of E-selectin-neutralizing antibody also abolished host APBA3-mediated metastatic formation. Thus, targeting APBA3 is useful for controlling metastatic niche formation by inflammatory monocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Monócitos/metabolismo , Metástase Neoplásica/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Quimiotaxia , Selectina E/antagonistas & inibidores , Selectina E/metabolismo , Glicólise , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/secundário , Camundongos , Camundongos Knockout , Modelos Biológicos , Monócitos/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/fisiopatologia , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Histochem Cell Biol ; 152(5): 333-343, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31410570

RESUMO

The membrane skeletal complex, protein 4.1G-membrane palmitoylated protein 6 (MPP6), is localized in spermatogonia and early spermatocytes of mouse seminiferous tubules. In this study, we investigated the Lin7 family of scaffolding proteins, which interact with MPP6. By immunohistochemistry, Lin7a and Lin7c were localized in germ cells, and Lin7c had especially strong staining in spermatogonia and early spermatocytes, characterized by staging of seminiferous tubules. By immunoelectron microscopy, Lin7 localization appeared under cell membranes in germ cells. The Lin7 staining pattern in seminiferous tubules was partially similar to that of 4.1G, cell adhesion molecule 1 (CADM1), and melanoma cell adhesion molecule (MCAM). Lin7-positive cells included type A spermatogonia, as revealed by double staining for Lin28a. Lin7 staining became weaker in MPP6-deficient mice by immunohistochemistry and western blotting, indicating that MPP6 transports and maintains Lin7 in germ cells. The histology of seminiferous tubules was unchanged in MPP6-deficient mice compared to that of wild-type mice. In cultured spermatogonial stem cells maintained with glial cell line-derived neurotropic factor (GDNF), Lin7 was clearly expressed and immunolocalized along cell membranes, especially at cell-cell junctions. Thus, Lin7 protein is expressed in germ cells, and Lin7, particularly Lin7c, is a useful marker for early spermatogenesis.


Assuntos
Guanilato Quinases/análise , Proteínas Ligadas a Lipídeos/análise , Túbulos Seminíferos/química , Proteínas de Transporte Vesicular/análise , Animais , Células Cultivadas , Guanilato Quinases/deficiência , Guanilato Quinases/metabolismo , Proteínas Ligadas a Lipídeos/deficiência , Proteínas Ligadas a Lipídeos/metabolismo , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Túbulos Seminíferos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Histochem Cell Biol ; 151(5): 385-394, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30357511

RESUMO

A membrane skeletal molecular complex, protein 4.1G-membrane palmitoylated protein 6 (MPP6)-Lin7-cell adhesion molecule 4 (CADM4), is incorporated in Schwann cells, especially in Schmidt-Lanterman incisures (SLIs), in the mouse peripheral nervous system (PNS). MPP6, Lin7, and CADM4 are transported to SLIs by 4.1G. In this study, we created MPP6-deficient mice and evaluated myelin structure and MPP6 protein complexes. In SLIs in MPP6-deficient nerves, Lin7 was rarely detected by immunohistochemistry and western blotting, but the localization and amount of CADM4 and 4.1G were not altered. Motor activity was not significantly impaired in a tail-suspension test, but the sciatic nerves of MPP6-deficient mice had thicker myelin in internodes by electron microscopy compared to that of wild-type mice. These results indicate that the MPP6-Lin7 complex regulates myelin formation.


Assuntos
Guanilato Quinases/metabolismo , Proteínas Ligadas a Lipídeos/metabolismo , Proteínas da Mielina/biossíntese , Sistema Nervoso Periférico/metabolismo , Animais , Western Blotting , Genótipo , Guanilato Quinases/deficiência , Guanilato Quinases/genética , Imuno-Histoquímica , Proteínas Ligadas a Lipídeos/deficiência , Proteínas Ligadas a Lipídeos/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Mutação , Proteínas da Mielina/química , Sistema Nervoso Periférico/citologia
10.
Adv Exp Med Biol ; 1190: 181-198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31760645

RESUMO

Schmidt-Lanterman incisure (SLI) is a circular-truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system (PNS). The SLI circular-truncated cones elongate like spring at the narrow sites of beaded appearance nerve fibers under the stretched condition. In this chapter, we demonstrate various molecular complexes in SLI, and especially focus on membrane skeleton, protein 4.1G-membrane protein palmitoylated 6 (MPP6)-cell adhesion molecule 4 (CADM4). 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. Motor activity and myelin ultrastructures were abnormal in 4.1G-deficient mice, indicating the 4.1G function as a signal for proper formation of myelin in PNS. Thus, SLI probably has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cell myelin formation.


Assuntos
Bainha de Mielina/fisiologia , Sistema Nervoso Periférico/fisiologia , Células de Schwann/fisiologia , Animais , Axônios , Moléculas de Adesão Celular/fisiologia , Guanilato Quinases/fisiologia , Proteínas Ligadas a Lipídeos/fisiologia , Proteínas de Membrana , Camundongos , Proteínas dos Microfilamentos/fisiologia , Bainha de Mielina/ultraestrutura , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 113(42): 11925-11930, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698125

RESUMO

Type I IFNs (IFN-α/ß) play crucial roles in the elimination of invading viruses. Multiple immune cells including macrophages recognize viral infection through a variety of pattern recognition receptors, such as Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors, and initiate type I IFN secretion and subsequent antiviral immune responses. However, the mechanisms by which host immune cells can produce adequate amounts of type I IFNs and then eliminate viruses effectively remain to be further elucidated. In the present study, we show that munc18-1-interacting protein 3 (Mint3) expression can be markedly induced during viral infection in macrophages. Mint3 enhances TLR3/4- and RIG-I-induced IRF3 activation and IFN-ß production by promoting K63-linked polyubiquitination of TNF receptor-associated factor 3 (TRAF3). Consistently, Mint3 deficiency greatly attenuated antiviral immune responses and increased viral replication. Therefore, we have identified Mint3 as a physiological positive regulator of TLR3/4 and RIG-I-induced IFN-ß production and have outlined a feedback mechanism for the control of antiviral immune responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interferon beta/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Viroses/etiologia , Viroses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/virologia , Camundongos , Camundongos Knockout , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fator 3 Associado a Receptor de TNF/metabolismo , Ubiquitinação
12.
Cancer Sci ; 108(6): 1095-1100, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28267240

RESUMO

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is expressed in different types of invasive and proliferative cells, including cancer cells and stromal cells. MT1-MMP cleaves extracellular matrix proteins, membrane proteins and other pericellular proteins, thereby changing the cellular microenvironment and regulating signal activation. Critical roles of protease activity in cancer cell proliferation, invasion and metastasis have been demonstrated by many groups. MT1-MMP also has a non-protease activity in that it inhibits the oxygen-dependent suppression of hypoxia-inducible factors (HIFs) via Munc18-1-interacting protein 3 (Mint3) and thereby enhances the expression of HIF target genes. Elevated HIF activity in MT1-MMP-expressing cancer cells is a fundamental mechanism underlying the Warburg effect, a well-known phenomenon where malignant cancer cells exhibit a higher rate of glucose metabolism. Because specific intervention of HIF activation by MT1-MMP suppresses tumor formation by cancer cells in mice, both the proteolytic and non-proteolytic activities of MT1-MMP are important for tumor malignancy and function in an integrated manner. In this review, we summarize recent findings relating to how MT1-MMP activates HIF and its effects on cancer cells and stromal cells.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeo Hidrolases/metabolismo , Animais , Movimento Celular/fisiologia , Humanos , Proteínas de Neoplasias/metabolismo
13.
Biochem Biophys Res Commun ; 490(3): 688-692, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28634075

RESUMO

Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Células da Medula Óssea/patologia , Neoplasias da Mama/patologia , Mama/patologia , Neoplasias Pulmonares/secundário , Pulmão/patologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células da Medula Óssea/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout
14.
Histochem Cell Biol ; 148(6): 597-606, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28755316

RESUMO

We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G-/- mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G-/- mice was slower than that in wild-type mice. Using electron microscopy, 4.1G-/- mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G-/- sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/deficiência , Microscopia Eletrônica , Bainha de Mielina/química , Bainha de Mielina/ultraestrutura , Sistema Nervoso Periférico/química , Sistema Nervoso Periférico/ultraestrutura
15.
Blood ; 119(23): 5405-16, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22544701

RESUMO

HSC fate decisions are regulated by cell-intrinsic and cell-extrinsic cues. The latter cues are derived from the BM niche. Membrane-type 1 matrix metalloproteinase (MT1-MMP), which is best known for its proteolytic role in pericellular matrix remodeling, is highly expressed in HSCs and stromal/niche cells. We found that, in MT1-MMP(-/-) mice, in addition to a stem cell defect, the transcription and release of kit ligand (KitL), stromal cell-derived factor-1 (SDF-1/CXCL12), erythropoietin (Epo), and IL-7 was impaired, resulting in a trilineage hematopoietic differentiation block, while addition of exogenous KitL and SDF-1 restored hematopoiesis. Further mechanistic studies revealed that MT1-MMP activates the hypoxia-inducible factor-1 (HIF-1) pathway via factor inhibiting HIF-1 (FIH-1) within niche cells, thereby inducing the transcription of HIF-responsive genes, which induce terminal hematopoietic differentiation. Thus, MT1-MMP in niche cells regulates postnatal hematopoiesis, by modulating hematopoietic HIF-dependent niche factors that are critical for terminal differentiation and migration.


Assuntos
Citocinas/genética , Hematopoese , Células-Tronco Hematopoéticas/citologia , Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Ativação Transcricional , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Linhagem Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Quimiocinas/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
16.
EBioMedicine ; 103: 105102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614865

RESUMO

BACKGROUND: Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS: We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS: CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION: MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING: Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.


Assuntos
Neoplasias Colorretais , Análise de Célula Única , Linfócitos T Reguladores , Microambiente Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/imunologia , Carcinogênese/genética , Carcinogênese/imunologia , Perfilação da Expressão Gênica , Transcriptoma , Comunicação Celular/imunologia , Tolerância Imunológica , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino
17.
Biomedicines ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831085

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that plays a crucial role in cells adapting to a low-oxygen environment by facilitating a switch from oxygen-dependent ATP production to glycolysis. Mediated by membrane type-1 matrix metalloproteinase (MT1-MMP) expression, Munc-18-1 interacting protein 3 (Mint3) binds to the factor inhibiting HIF-1 (FIH-1) and inhibits its suppressive effect, leading to HIF-1α activation. Defects in Mint3 generally lead to improved acute inflammation, which is regulated by HIF-1α and subsequent glycolysis, as well as the suppression of the proliferation and metastasis of cancer cells directly through its expression in cancer cells and indirectly through its expression in macrophages or fibroblasts associated with cancer. Mint3 in inflammatory monocytes enhances the chemotaxis into metastatic sites and the production of vascular endothelial growth factors, which leads to the expression of E-selectin at the metastatic sites and the extravasation of cancer cells. Fibroblasts express L1 cell adhesion molecules in a Mint3-dependent manner and enhance integrin-mediated cancer progression. In pancreatic cancer cells, Mint3 directly promotes cancer progression. Naphthofluorescein, a Mint3 inhibitor, can disrupt the interaction between FIH-1 and Mint3 and potently suppress Mint3-mediated inflammation, cancer progression, and metastasis without causing marked adverse effects. In this review, we will introduce the potential of Mint3 as a therapeutic target for inflammatory diseases and cancers.

18.
Cells ; 12(17)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681919

RESUMO

Membrane type1-matrix metalloproteinase (MT1-MMP) is a member of metalloproteinases that is tethered to the transmembrane. Its major function in cancer progression is to directly degrade the extracellular matrix components, which are mainly type I-III collagen or indirectly type IV collagen through the activation of MMP-2 with a cooperative function of the tissue inhibitor of metalloproteinase-2 (TIMP-2). MT1-MMP is expressed as an inactive form (zymogen) within the endoplasmic reticulum (ER) and receives truncation processing via furin for its activation. Upon the appropriate trafficking of MT1-MMP from the ER, the Golgi apparatus to the cell surface membrane, MT1-MMP exhibits proteolytic activities to the surrounding molecules such as extracellular matrix components and cell surface molecules. MT1-MMP also retains a non-proteolytic ability to activate hypoxia-inducible factor 1 alpha (HIF-1A) via factors inhibiting the HIF-1 (FIH-1)-Mint3-HIF-1 axis, resulting in the upregulation of glucose metabolism and oxygen-independent ATP production. Through various functions of MT1-MMP, cancer cells gain motility on migration/invasion, thus causing metastasis. Despite the long-time efforts spent on the development of MT1-MMP interventions, none have been accomplished yet due to the side effects caused by off-target effects. Recently, MT1-MMP-specific small molecule inhibitors or an antibody have been reported and these inhibitors could potentially be novel agents for cancer treatment.


Assuntos
Metaloproteinase 14 da Matriz , Inibidor Tecidual de Metaloproteinase-2 , Membrana Celular , Anticorpos , Colágeno Tipo I , Colágeno Tipo III
19.
Genes (Basel) ; 14(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37895291

RESUMO

The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Membrana , Humanos , Masculino , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais Geneticamente Modificados , Proteínas do Citoesqueleto/metabolismo , Canais Iônicos , Sistema Nervoso Periférico/metabolismo
20.
Oncogene ; 42(16): 1294-1307, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36879117

RESUMO

Oncometabolites, such as D/L-2-hydroxyglutarate (2HG), have directly been implicated in carcinogenesis; however, the underlying molecular mechanisms remain poorly understood. Here, we showed that the levels of the L-enantiomer of 2HG (L2HG) were specifically increased in colorectal cancer (CRC) tissues and cell lines compared with the D-enantiomer of 2HG (D2HG). In addition, L2HG increased the expression of ATF4 and its target genes by activating the mTOR pathway, which subsequently provided amino acids and improved the survival of CRC cells under serum deprivation. Downregulating the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) and oxoglutarate dehydrogenase (OGDH) increased L2HG levels in CRC, thereby activating mTOR-ATF4 signaling. Furthermore, L2HGDH overexpression reduced L2HG-mediated mTOR-ATF4 signaling under hypoxia, whereas L2HGDH knockdown promoted tumor growth and amino acid metabolism in vivo. Together, these results indicate that L2HG ameliorates nutritional stress by activating the mTOR-ATF4 axis and thus could be a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias Colorretais/patologia , Aminoácidos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Oxirredutases do Álcool/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA