Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 6(29): 19162-19169, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337254

RESUMO

Direct methanol fuel cell technology implementation mainly depends on the development of non-platinum catalysts with good CO tolerance. Among the widely studied transition-metal catalysts, cobalt oxide with distinctively higher catalytic efficiency is highly desirable. Here, we have evolved a simple method of synthesizing cobalt tungsten oxide hydroxide hydrate nanowires with DNA (CTOOH/DNA) and without incorporating DNA (CTOOH) by microwave irradiation and subsequently employed them as electrocatalysts for methanol oxidation. Following this, we examined the influence of incorporating DNA into CTOOH by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The enhanced electrochemical surface area of CTOOH offered readily available electroactive sites and resulted in a higher oxidation current at a lower onset potential for methanol oxidation. On the other hand, CTOOH/DNA exhibited improved CO tolerance and it was evident from the chronoamperometric studies. Herein, we noticed only a 2.5 and 1.8% drop at CTOOH- and CTOOH/DNA-modified electrodes, respectively, after 30 min. Overall, from the results, it was evident that the presence of DNA in CTOOH played an important role in the rapid removal of adsorbed intermediates and regenerated active catalyst centers possibly by creating high density surface defects around the nanochains than bare CTOOH.

2.
Bioelectrochemistry ; 131: 107373, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31525638

RESUMO

Smart electrochemical biosensors have emerged as a promising alternative analytical diagnostic tool in recent clinical practice. However, improvement in the biocompatibility and electrical conductivity of the biosensor matrix and the immobilization of various bioactive molecules such as enzymes still remain challenging. The present research reports the synthesis of a biocompatible hydrogel network and its integration with gold nanocubes (AuNCs) for developing a novel biosensor with improved functionality. The interpenetrating hydrogel network consist of biopolymers developed using graft co-polymerization of ß-cyclodextrin (ß-CD) and chitosan (CS). The novelty of this work is in integrating the CS-g-ß-CD hydrogel network with conductive AuNCs for improving hydrogel conductivity, biosensor sensitivity and use of the material for a biocompatible sensor. The present protocol advances the state of the art for the utilization of biopolymeric hydrogels system in synergy with an enzymatic biosensing protocol for exclusively detecting hydrogen peroxide (H2O2). Immobilization of the mitochondrial protein, cytochrome c (cyt c) into the hydrogel nanocomposite matrix was performed via thiol cross-linking. This organic-inorganic hybrid nanocomposite hydrogel matrix exhibited high biocompatibility (RAW 264.7 and N2a cell lines), improved electrical conductivity to attain high sensitivity (1.2 mA mM-1 cm-2) and a low detection limit (15 × 10-9 M) for H2O2.


Assuntos
Materiais Biocompatíveis/química , Técnicas Eletroquímicas/métodos , Ouro/química , Hidrogéis/química , Peróxido de Hidrogênio/análise , Nanoestruturas/química , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA