RESUMO
Theory and simulations predict the complex nature of calcium interaction with the lipid membrane. By maintaining the calcium concentrations at physiological conditions, herein we demonstrate experimentally the effect of Ca2+ in a minimalistic cell-like model. For this purpose, giant unilamellar vesicles (GUVs) with a neutral lipid DOPC are generated, and the ion-lipid interaction is observed with attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy providing molecular resolution. Firstly, Ca2+ encapsulated within the vesicle binds to the phosphate head groups of the inner leaflets and triggers vesicle compaction. This is tracked by changes in vibrational modes of the lipid groups. As the calcium concentration within the GUV increases, IR intensities change indicating vesicle dehydration and lateral compression of the membrane. Secondly, by inducing a calcium gradient across the membrane up to a ratio of 1:20, interaction between several vesicles occurs as Ca2+ can bind to the outer leaflets leading to vesicle clustering. It is observed that larger calcium gradients induce stronger interactions. These findings with an exemplary biomimetic model reveal that divalent calcium ions not only cause local changes to the lipid packing but also have macroscopic implications to initiate vesicle-vesicle interaction.
Assuntos
Cálcio , Lipossomas Unilamelares , Cálcio/metabolismo , Lipossomas Unilamelares/química , Membranas/metabolismo , LipídeosRESUMO
Owing to their large penetration depth and high resolution, X-rays are ideally suited to study structures and structural changes within intact biological cells. For this reason, X-ray-based techniques have been used to investigate adhesive cells on solid supports. However, these techniques cannot easily be transferred to the investigation of suspended cells in flow. Here, an X-ray compatible microfluidic device that serves as a sample delivery system and measurement environment for such studies is presented. As a proof of concept, the microfluidic device is applied to investigate chemically fixed bovine red blood cells by small-angle X-ray scattering (SAXS). A very good agreement is found between in-flow and static SAXS data. Moreover, the data are fitted with a hard-sphere model and screened Coulomb interactions to obtain the radius of the protein hemoglobin within the cells. Thus, the utility of this device for studying suspended cells with SAXS in continuous flow is demonstrated.
Assuntos
Eritrócitos , Proteínas , Animais , Bovinos , Raios X , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas/químicaRESUMO
Vimentin intermediate filaments (IFs) are part of a family of proteins that constitute one of the three filament systems in the cytoskeleton, a major contributor to cell mechanics. One property that distinguishes IFs from the other cytoskeletal filament types, actin filaments and microtubules, is their highly hierarchical assembly pathway, where a lateral association step is followed by elongation. Here we present an innovative technique to follow the elongation reaction in solution and in situ by time-resolved static and dynamic light scattering, thereby precisely capturing the relevant time and length scales of seconds to minutes and 60-600 nm, respectively. We apply a quantitative model to our data and succeed in consistently describing the entire set of data, including particle mass, radius of gyration, and hydrodynamic radius during longitudinal association.
Assuntos
Difusão Dinâmica da Luz , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Humanos , Cinética , Modelos Moleculares , Agregados Proteicos , Domínios Proteicos , Estrutura Secundária de Proteína , Fatores de Tempo , Vimentina/químicaRESUMO
Intermediate filaments are a major structural element in the cytoskeleton of animal cells that mechanically integrate other cytoskeletal components and absorb externally applied stress. Their role is likely to be linked to their complex molecular architecture which is the product of a multi-step assembly pathway. Intermediate filaments form tetrameric subunits which assemble in the presence of monovalent salts to form unit length filaments that subsequently elongate by end-to-end annealing. The present work characterizes this complex assembly process using reconstituted vimentin intermediate filaments with monovalent salts as an assembly trigger. A multi-scale approach is used, comprising static light scattering, dynamic light scattering and quantitative scanning transmission electron microscopy (STEM) mass measurements. Light scattering reveals the radius of gyration (Rg), molecular weight (Mw) and diffusion coefficient (D) of the assembling filaments as a function of time and salt concentration (cS) for the given protein concentration of 0.07 g L-1. At low cS (10 mM KCl) no lateral or elongational growth is observed, whereas at cS = 50-200 mM, the hydrodynamic cross-sectional radius and the elongation rate increases with cS. Rgversus Mw plots suggest that the mass per unit length increases with increasing salt content, which is confirmed by STEM mass measurements. A kinetic model based on rate equations for a two step process is able to accurately describe the variation of mass, length and diffusion coefficient of the filaments with time and provides a consistent description of the elongation accelerated by increasing cS.
Assuntos
Concentração Osmolar , Vimentina/química , Humanos , Hidrodinâmica , CinéticaRESUMO
Encapsulating reacting biological or chemical samples in microfluidic droplets has the great advantage over single-phase flows of providing separate reaction compartments. These compartments can be filled in a combinatoric way and prevent the sample from adsorbing to the channel walls. In recent years, small-angle X-ray scattering (SAXS) in combination with microfluidics has evolved as a nanoscale method of such systems. Here, we approach two major challenges associated with combining droplet microfluidics and SAXS. First, we present a simple, versatile, and reliable device, which is both suitable for stable droplet formation and compatible with in situ X-ray measurements. Second, we solve the problem of "diluting" the sample signal by the signal from the oil separating the emulsion droplets by multiple fast acquisitions per droplet and data thresholding. We show that using our method, even the weakly scattering protein vimentin provides high signal-to-noise ratio data.
Assuntos
Técnicas Analíticas Microfluídicas , Proteínas/química , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios XRESUMO
Gold nanoparticle (AuNP) network structures featuring particles from the two-phase Brust-Schiffrin synthesis and linear RAFT oligomers of styrene with two and multiple trithiocarbonate (TTC) groups along their backbone have been investigated in detail. Insights into the internal structures of these particle networks could be obtained from small-angle X-ray scattering experiments, showing that primary AuNPs are cross-linked by the employed molecular linker. The extent of AuNP network formation was investigated by means of dynamic light scattering and UV/visible extinction spectroscopy, showing an abrupt attenuation of network formation after a critical degree of polymerization of the cross-linker is exceeded. Analysis of transmission electron micrographs indicated a three-dimensional shape of the particle superstructures, which is evenly filled with the primary AuNPs. From the results obtained in this study, guidelines for the fabrication of nanoparticle networks from the self-assembly with macromolecular cross-linkers are suggested.
RESUMO
The combination of microfluidics and X-ray methods attracts a lot of attention from researchers as it brings together the high controllability of microfluidic sample environments and the small length scales probed by X-rays. In particular, the fields of biophysics and biology have benefited enormously from such approaches. We introduce a straightforward fabrication method for X-ray compatible microfluidic devices made solely from cyclic olefin copolymers. We benchmark the performance of the devices against other devices including more commonly used Kapton windows and obtain data of equal quality using small angle X-ray scattering. An advantage of the devices presented here is that no gluing between interfaces is necessary, rendering the production very reliable. As a biophysical application, we investigate the early time points of the assembly of vimentin intermediate filament proteins into higher-order structures. This weakly scattering protein system leads to high quality data in the new devices, thus opening up the way for numerous future applications.
RESUMO
The structural organization of metazoan cells and their shape are established through the coordinated interaction of a composite network consisting of three individual filament systems, collectively termed the cytoskeleton. Specifically, microtubules and actin filaments, which assemble from monomeric globular proteins, provide polar structures that serve motor proteins as tracks. In contrast, intermediate filaments (IFs) assemble from highly charged, extended coiled coils in a hierarchical assembly mechanism of lateral and longitudinal interaction steps into non-polar structures. IF proteins are expressed in a distinctly tissue-specific way and thereby serve to generate the precise plasticity of the respective cells and tissues. Accordingly, in the cell, numerous parameters such as pH and salt concentration are adjusted such that the generation of functional networks is ensured. Here, we transfer the problem for the mesenchymal IF protein vimentin to an in vitro setting and combine small angle x-ray scattering with microfluidics and finite element method simulations. Our approach is adapted to resolve the early assembly steps, which take place in the sub-second to second range. In particular, we reveal the influence of ion species and concentrations on the assembly. By tuning the flow rates and thus concentration profiles, we find a minimal critical salt concentration for the initiation of the assembly. Furthermore, our analysis of the surface sensitive Porod regime in the x-ray data reveals that the formation of first assembly intermediates, so-called unit length filaments, is not a one-step reaction but consists of distinct consecutive lateral association steps followed by radial compaction as well as smoothening of the surface of the full-width filament.
RESUMO
X-ray imaging of intact biological cells is emerging as a complementary method to visible light or electron microscopy. Owing to the high penetration depth and small wavelength of X-rays, it is possible to resolve subcellular structures at a resolution of a few nanometers. Here, we apply scanning X-ray nanodiffraction in combination with time-lapse bright-field microscopy to nuclei of 3T3 fibroblasts and thus relate the observed structures to specific phases in the cell division cycle. We scan the sample at a step size of 250 nm and analyze the individual diffraction patterns according to a generalized Porod's law. Thus, we obtain information on the aggregation state of the nuclear DNA at a real space resolution on the order of the step size and in parallel structural information on the order of few nanometers. We are able to distinguish nucleoli, heterochromatin, and euchromatin in the nuclei and follow the compaction and decompaction during the cell division cycle.
Assuntos
Nucléolo Celular , DNA/química , Nanotecnologia , Ciclo Celular , Microscopia Eletrônica , Radiografia , Raios XRESUMO
In recent years, X-ray imaging of biological cells has emerged as a complementary alternative to fluorescence and electron microscopy. Different techniques were established and successfully applied to macromolecular assemblies and structures in cells. However, while the resolution is reaching the nanometer scale, the dose is increasing. It is essential to develop strategies to overcome or reduce radiation damage. Here we approach this intrinsic problem by combing two different X-ray techniques, namely ptychography and nanodiffraction, in one experiment and on the same sample. We acquire low dose ptychography overview images of whole cells at a resolution of 65 nm. We subsequently record high-resolution nanodiffraction data from regions of interest. By comparing images from the two modalities, we can exclude strong effects of radiation damage on the specimen. From the diffraction data we retrieve quantitative structural information from intracellular bundles of keratin intermediate filaments such as a filament radius of 5 nm, hexagonal geometric arrangement with an interfilament distance of 14 nm and bundle diameters on the order of 70 nm. Thus, we present an appealing combined approach to answer a broad range of questions in soft-matter physics, biophysics and biology.