Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Phys Chem Chem Phys ; 22(5): 2878-2886, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31950118

RESUMO

Keggin-type polyoxometalate derived ionic liquids (POM-ILs) have recently been presented as effective solvent systems for biomass delignification. To investigate the mechanism of lignin dissolution in POM-ILs, the system involving POM-IL ([C4C1Im]3[PW12O40]) and guaiacyl glycerol-ß-guaiacyl ether (GGE), which contains a ß-O-4 bond (the most dominant bond moiety in lignin), was studied using quantum mechanical calculations and molecular dynamics simulations. These studies show that more stable POM-IL structures are formed when [C4C1Im]+ is anchored in the connecting four terminal oxygen region of the [PW12O40]3- surface. The cations in POM-ILs appear to stabilize the geometry by offering strong and positively charged sites, and the POM anion is a good H-bond acceptor. Calculations of POM-IL interacting with GGE show the POM anion interacts strongly with GGE through many H-bonds and π-π interactions which are the main interactions between the POM-IL anion and GGE and are strong enough to force GGE into highly bent conformations. These simulations provide fundamental models of the dissolution mechanism of lignin by POM-IL, which is promoted by strong interactions of the POM-IL anion with lignin.


Assuntos
Líquidos Iônicos/química , Lignina/química , Simulação de Dinâmica Molecular , Teoria Quântica , Compostos de Tungstênio/química , Guaifenesina/análogos & derivados , Guaifenesina/química , Ligação de Hidrogênio , Lignina/metabolismo , Solubilidade , Eletricidade Estática
2.
Proc Natl Acad Sci U S A ; 114(16): E3205-E3214, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373573

RESUMO

Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, was previously available. LigM-catalyzed demethylation enables further modification and ring opening of the single-ring aromatics vanillate and 3-O-methylgallate, which are common byproducts of biofuel production. Here, we characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. These results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.


Assuntos
Oxirredutases O-Desmetilantes/química , Oxirredutases O-Desmetilantes/metabolismo , Sphingomonas/enzimologia , Tirosina/metabolismo , Catálise , Cristalografia por Raios X , Cinética , Redes e Vias Metabólicas , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 113(50): 14324-14329, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911781

RESUMO

Stilbenes are diphenyl ethene compounds produced naturally in a wide variety of plant species and some bacteria. Stilbenes are also derived from lignin during kraft pulping. Stilbene cleavage oxygenases (SCOs) cleave the central double bond of stilbenes, forming two phenolic aldehydes. Here, we report the structure of an SCO. The X-ray structure of NOV1 from Novosphingobium aromaticivorans was determined in complex with its substrate resveratrol (1.89 Å), its product vanillin (1.75 Å), and without any bound ligand (1.61 Å). The enzyme is a seven-bladed ß-propeller with an iron cofactor coordinated by four histidines. In all three structures, dioxygen is observed bound to the iron in a side-on fashion. These structures, along with EPR analysis, allow us to propose a mechanism in which a ferric-superoxide reacts with substrate activated by deprotonation of a phenol group at position 4 of the substrate, which allows movement of electron density toward the central double bond and thus facilitates reaction with the ferric superoxide electrophile. Correspondingly, NOV1 cleaves a wide range of other stilbene-like compounds with a 4'-OH group, offering potential in processing some solubilized fragments of lignin into monomer aromatic compounds.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Estilbenos/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/genética , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resveratrol , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Especificidade por Substrato
4.
J Biol Chem ; 291(10): 5234-46, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637355

RESUMO

Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via ß-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent ß-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because ß-aryl ether bonds account for 50-70% of all interunit linkages in lignin, understanding the mechanism of enzymatic ß-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Lignina/metabolismo , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Proteobactérias/enzimologia , Especificidade por Substrato
5.
J Biol Chem ; 291(19): 10228-38, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26940872

RESUMO

There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of ß-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. ß-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic ß-aryl ether (ß-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the ß-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Sphingomonadaceae/enzimologia , Catálise , Cristalografia por Raios X , Éteres/metabolismo , Redes e Vias Metabólicas , Modelos Moleculares , Conformação Proteica , Estereoisomerismo , Especificidade por Substrato
6.
J Comput Chem ; 38(29): 2538-2552, 2017 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-28857244

RESUMO

Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition of mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python "Add-On" named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. A number of examples are discussed. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

7.
Microb Ecol ; 72(1): 14-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26956183

RESUMO

Large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded with the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems.


Assuntos
Bactérias/classificação , Microalgas/microbiologia , Microbiota , Bactérias/genética , Bactérias/isolamento & purificação , Biocombustíveis , Biomassa , DNA Bacteriano/genética , Biblioteca Gênica , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estramenópilas/microbiologia , Microbiologia da Água
9.
J Biol Chem ; 288(21): 14985-92, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23580647

RESUMO

A recent metagenomic analysis sequenced a switchgrass-adapted compost community to identify enzymes from microorganisms that were specifically adapted to switchgrass under thermophilic conditions. These enzymes are being examined as part of the pretreatment process for the production of "second-generation" biofuels. Among the enzymes discovered was JMB19063, a novel three-domain ß-glucosidase that belongs to the GH3 (glycoside hydrolase 3) family. Here, we report the structure of JMB19063 in complex with glucose and the catalytic variant D261N crystallized in the presence of cellopentaose. JMB19063 is first structure of a dimeric member of the GH3 family, and we demonstrate that dimerization is required for catalytic activity. Arg-587 and Phe-598 from the C-terminal domain of the opposing monomer are shown to interact with bound ligands in the D261N structure. Enzyme assays confirmed that these residues are absolutely essential for full catalytic activity.


Assuntos
Glucose/química , Metagenoma , Multimerização Proteica , Microbiologia do Solo , Solo , beta-Glucosidase/química , Glucose/genética , Glucose/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , beta-Glucosidase/classificação , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
10.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540744

RESUMO

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of ß-O-4' ether and C-C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze ß-O-4' ether and C-C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself.


Assuntos
Basidiomycota , Celulases , Lignina/química , Lacase/metabolismo , Basidiomycota/metabolismo , Carboidratos , Açúcares , Éteres
11.
J Biol Chem ; 287(30): 25335-43, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22645145

RESUMO

Enzymes are traditionally viewed as having exquisite substrate specificity; however, recent evidence supports the notion that many enzymes have evolved activities against a range of substrates. The diversity of activities across glycoside hydrolase family 5 (GH5) suggests that this family of enzymes may contain numerous members with activities on multiple substrates. In this study, we combined structure- and sequence-based phylogenetic analysis with biochemical characterization to survey the prevalence of dual specificity for glucan- and mannan-based substrates in the GH5 family. Examination of amino acid profile differences between the subfamilies led to the identification and subsequent experimental confirmation of an active site motif indicative of dual specificity. The motif enabled us to successfully discover several new dually specific members of GH5, and this pattern is present in over 70 other enzymes, strongly suggesting that dual endoglucanase-mannanase activity is widespread in this family. In addition, reinstatement of the conserved motif in a wild type member of GH5 enhanced its catalytic efficiency on glucan and mannan substrates by 175 and 1,600%, respectively. Phylogenetic examination of other GH families further indicates that the prevalence of enzyme multispecificity in GHs may be greater than has been experimentally characterized. Single domain multispecific GHs may be exploited for developing improved enzyme cocktails or facile engineering of microbial hosts for consolidated bioprocessing of lignocellulose.


Assuntos
Proteínas de Bactérias/genética , Glicosídeo Hidrolases/genética , Filogenia , Proteínas de Plantas/genética , Motivos de Aminoácidos , Proteínas de Bactérias/química , Catálise , Glicosídeo Hidrolases/química , Proteínas de Plantas/química , Especificidade por Substrato/fisiologia
12.
Sci Rep ; 13(1): 271, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609448

RESUMO

Lignin, the second most abundant biopolymer found in nature, has emerged as a potential source of sustainable fuels, chemicals, and materials. Finding suitable solvents, as well as technologies for efficient and affordable lignin dissolution and depolymerization, are major obstacles in the conversion of lignin to value-added products. Certain ionic liquids (ILs) are capable of dissolving and depolymerizing lignin but designing and developing an effective IL for lignin dissolution remains quite challenging. To address this issue, the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) model was used to screen 5670 ILs by computing logarithmic activity coefficients (ln(γ)) and excess enthalpies (HE) of lignin, respectively. Based on the COSMO-RS computed thermodynamic properties (ln(γ) and HE) of lignin, anions such as acetate, methyl carbonate, octanoate, glycinate, alaninate, and lysinate in combination with cations like tetraalkylammonium, tetraalkylphosphonium, and pyridinium are predicted to be suitable solvents for lignin dissolution. The dissolution properties such as interaction energy between anion and cation, viscosity, Hansen solubility parameters, dissociation constants, and Kamlet-Taft parameters of selected ILs were evaluated to assess their propensity for lignin dissolution. Furthermore, molecular dynamics (MD) simulations were performed to understand the structural and dynamic properties of tetrabutylammonium [TBA]+-based ILs and lignin mixtures and to shed light on the mechanisms involved in lignin dissolution. MD simulation results suggested [TBA]+-based ILs have the potential to dissolve lignin because of their higher contact probability and interaction energies with lignin when compared to cholinium lysinate.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Lignina/química , Solventes/química , Simulação de Dinâmica Molecular , Ânions/química , Cátions/química
13.
J Fungi (Basel) ; 9(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36983539

RESUMO

Phlebia radiata is a widespread white-rot basidiomycete fungus with significance in diverse biotechnological applications due to its ability to degrade aromatic compounds, xenobiotics, and lignin using an assortment of oxidative enzymes including laccase. In this work, a chemical screen with 480 conditions was conducted to identify chemical inducers of laccase expression in P. radiata. Among the chemicals tested, phenothiazines were observed to induce laccase activity in P. radiata, with promethazine being the strongest laccase inducer of the phenothiazine-derived compounds examined. Secretomes produced by promethazine-treated P. radiata exhibited increased laccase protein abundance, increased enzymatic activity, and an enhanced ability to degrade phenolic model lignin compounds. Transcriptomics analyses revealed that promethazine rapidly induced the expression of genes encoding lignin-degrading enzymes, including laccase and various oxidoreductases, showing that the increased laccase activity was due to increased laccase gene expression. Finally, the generality of promethazine as an inducer of laccases in fungi was demonstrated by showing that promethazine treatment also increased laccase activity in other relevant fungal species with known lignin conversion capabilities including Trametes versicolor and Pleurotus ostreatus.

14.
Langmuir ; 28(22): 8348-58, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22554348

RESUMO

A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans ), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima ). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.


Assuntos
Proteínas de Bactérias/química , Celulase/química , Celulose/química , Proteínas Fúngicas/química , Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Líquidos Iônicos/química , Difração de Nêutrons , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
15.
Biotechnol Adv ; 54: 107809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34333091

RESUMO

Development and deployment of commercial biorefineries based on conversion of lignocellulosic biomass into biofuels and bioproducts faces many challenges that must be addressed before they are commercially viable. One of the biggest challenges faced is the efficient and scalable valorization of lignin, one of the three major components of the plant cell wall. Lignin is the most abundant aromatic biopolymer on earth, and its presence hinders the extraction of cellulose and hemicellulose that is essential to biochemical conversion of lignocellulose to fuels and chemicals. There has been a significant amount of work over the past 20 years that has sought to develop innovative processes designed to extract and recycle lignin into valuable compounds and help reduce the overall costs of the biorefinery process. Due to the complex matrix of lignin, which is essential for plant survival, the development of a reliable and efficient lignin conversion technology has been difficult to achieve. One approach that has received significant interest relies on the use of enzymes, notably laccases, a class of multi­copper green oxidative enzymes that catalyze bond breaking in lignin to produce smaller oligomers. In this review, we first assess the different innovations of lignin valorization using laccases within the context of a biorefinery process, and then assess the latest economical advances that these innovations offered. Finally, we review laccase characterization and optimization, as well as the prospects and bottlenecks of this class of enzymes within the industrial and biorefining sectors.


Assuntos
Biocombustíveis , Lignina , Biomassa , Lacase , Lignina/química
16.
mSphere ; 7(4): e0023122, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35730934

RESUMO

Outdoor cultivation of microalgae has promising potential for renewable bioenergy, but there is a knowledge gap on the structure and function of the algal microbiome that coinhabits these ecosystems. Here, we describe the assembly mechanisms, taxonomic structure, and metabolic potential of bacteria associated with Microchloropsis salina cultivated outdoors. Open mesocosms were inoculated with algal cultures that were either free of bacteria or coincubated with one of two different strains of alga-associated bacteria and were sampled across five time points taken over multiple harvesting rounds of a 40-day experiment. Using quantitative analyses of metagenome-assembled genomes (MAGs), we tracked bacterial community compositional abundance and taxon-specific functional capacity involved in algal-bacterial interactions. One of the inoculated bacteria (Alteromonas sp.) persisted and dispersed across mesocosms, whereas the other inoculated strain (Phaeobacter gallaeciensis) disappeared by day 17 while a taxonomically similar but functionally distinct Phaeobacter strain became established. The inoculated strains were less abundant than 6 numerically dominant newly recruited taxa with functional capacities for mutualistic or saprophytic lifestyles, suggesting a generalist approach to persistence. This includes a highly abundant unclassified Rhodobacteraceae species that fluctuated between 25% and 77% of the total community. Overall, we did not find evidence for priority effects exerted by the distinct inoculum conditions; all mesocosms converged with similar microbial community compositions by the end of the experiment. Instead, we infer that the 15 total populations were retained due to host selection, as they showed high metabolic potential for algal-bacterial interactions such as recycling alga-produced carbon and nitrogen and production of vitamins and secondary metabolites associated with algal growth and senescence, including B vitamins, tropodithietic acid, and roseobacticides. IMPORTANCE Bacteria proliferate in nutrient-rich aquatic environments, including engineered algal biofuel systems, where they remineralize photosynthates, exchange secondary metabolites with algae, and can influence system output of biomass or oil. Despite this, knowledge on the microbial ecology of algal cultivation systems is lacking, and the subject is worthy of investigation. Here, we used metagenomics to characterize the metabolic capacities of the predominant bacteria associated with the biofuel-relevant microalga Microchloropsis salina and to predict testable metabolic interactions between algae and manipulated communities of bacteria. We identified a previously undescribed and uncultivated organism that dominated the community. Collectively, the microbial community may interact with the alga in cultivation via exchange of secondary metabolites which could affect algal success, which we demonstrate as a possible outcome from controlled experiments with metabolically analogous isolates. These findings address the scalability of lab-based algal-bacterial interactions through to cultivation systems and more broadly provide a framework for empirical testing of genome-based metabolic predictions.


Assuntos
Biocombustíveis , Microbiota , Biomassa , Metagenoma , Simbiose
17.
Biomacromolecules ; 12(6): 2216-24, 2011 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-21553874

RESUMO

Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) of the interaction of a fungal enzyme extract ( T. viride ) and an endoglucanse from A. niger with amorphous cellulose films. The use of amorphous cellulose is motivated by that the fact that several biomass pretreatments currently under investigation disrupt the native crystalline structure of cellulose and increase the amorphous content. NR reveals the profile of water through the film at nanometer resolution and is highly sensitive to interfacial roughness, whereas QCM-D provides changes in mass and film stiffness. NR can be performed using either H(2)O- or D(2)O-based aqueous reservoirs. NR measurement of swelling of a cellulose film in D(2)O and in H(2)O revealed that D/H exchange on the cellulose chains must be taken into account when a D(2)O-based reservoir is used. The results also show that cellulose films swell slightly more in D(2)O than in H(2)O. Regarding enzymatic digestion, at 20 °C in H(2)O buffer the T. viride cocktail rapidly digested the entire film, initially roughening the surface, followed by penetration and activity throughout the bulk of the film. In contrast, over the same time period, the endoglucanase was active mainly at the surface of the film and did not increase the surface roughness.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Aspergillus niger/enzimologia , Celulase/química , Celulose/química , Cristalização , Hidrólise , Nêutrons , Técnicas de Microbalança de Cristal de Quartzo , Espectrometria por Raios X , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Trichoderma/enzimologia , Água/química
18.
Biotechnol Biofuels ; 14(1): 108, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926536

RESUMO

BACKGROUND: Lignin peroxidases catalyze a variety of reactions, resulting in cleavage of both ß-O-4' ether bonds and C-C bonds in lignin, both of which are essential for depolymerizing lignin into fragments amendable to biological or chemical upgrading to valuable products. Studies of the specificity of lignin peroxidases to catalyze these various reactions and the role reaction conditions such as pH play have been limited by the lack of assays that allow quantification of specific bond-breaking events. The subsequent theoretical understanding of the underlying mechanisms by which pH modulates the activity of lignin peroxidases remains nascent. Here, we report on combined experimental and theoretical studies of the effect of pH on the enzyme-catalyzed cleavage of ß-O-4' ether bonds and of C-C bonds by a lignin peroxidase isozyme H8 from Phanerochaete chrysosporium and an acid stabilized variant of the same enzyme. RESULTS: Using a nanostructure initiator mass spectrometry assay that provides quantification of bond breaking in a phenolic model lignin dimer we found that catalysis of degradation of the dimer to products by an acid-stabilized variant of lignin peroxidase isozyme H8 increased from 38.4% at pH 5 to 92.5% at pH 2.6. At pH 2.6, the observed product distribution resulted from 65.5% ß-O-4' ether bond cleavage, 27.0% Cα-C1 carbon bond cleavage, and 3.6% Cα-oxidation as by-product. Using ab initio molecular dynamic simulations and climbing-image Nudge Elastic Band based transition state searches, we suggest the effect of lower pH is via protonation of aliphatic hydroxyl groups under which extremely acidic conditions resulted in lower energetic barriers for bond-cleavages, particularly ß-O-4' bonds. CONCLUSION: These coupled experimental results and theoretical explanations suggest pH is a key driving force for selective and efficient lignin peroxidase isozyme H8 catalyzed depolymerization of the phenolic lignin dimer and further suggest that engineering of lignin peroxidase isozyme H8 and other enzymes involved in lignin depolymerization should include targeting stability at low pH.

19.
Sci Rep ; 11(1): 11803, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083602

RESUMO

Lignocellulosic biomass is composed of three major biopolymers: cellulose, hemicellulose and lignin. Analytical tools capable of quickly detecting both glycan and lignin deconstruction are needed to support the development and characterization of efficient enzymes/enzyme cocktails. Previously we have described nanostructure-initiator mass spectrometry-based assays for the analysis of glycosyl hydrolase and most recently an assay for lignin modifying enzymes. Here we integrate these two assays into a single multiplexed assay against both classes of enzymes and use it to characterize crude commercial enzyme mixtures. Application of our multiplexed platform based on nanostructure-initiator mass spectrometry enabled us to characterize crude mixtures of laccase enzymes from fungi Agaricus bisporus (Ab) and Myceliopthora thermophila (Mt) revealing activity on both carbohydrate and aromatic substrates. Using time-series analysis we determined that crude laccase from Ab has the higher GH activity and that laccase from Mt has the higher activity against our lignin model compound. Inhibitor studies showed a significant reduction in Mt GH activity under low oxygen conditions and increased activities in the presence of vanillin (common GH inhibitor). Ultimately, this assay can help to discover mixtures of enzymes that could be incorporated into biomass pretreatments to deconstruct diverse components of lignocellulosic biomass.


Assuntos
Enzimas/química , Lignina/química , Espectrometria de Massas/métodos , N-Glicosil Hidrolases/química , Ativação Enzimática , Ensaios Enzimáticos , Estrutura Molecular
20.
Biochemistry ; 49(25): 5278-89, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20507120

RESUMO

A striking feature of the CLIC (chloride intracellular channel) protein family is the ability of its members to convert between a soluble state and an integral membrane channel form. Direct evidence of the structural transition required for the CLIC protein to autonomously insert into the membrane is lacking, largely because of the challenge of probing the conformation of the membrane-bound protein. However, insights into the CLIC transmembrane form can be gained by biophysical methods such as fluorescence resonance energy transfer (FRET) spectroscopy. This approach was used to measure distances from tryptophan 35, located within the CLIC1 putative N-domain transmembrane region, to three native cysteine residues within the C-terminal domain. These distances were computed both in aqueous solution and upon the addition of membrane vesicles. The FRET distances were used as constraints for modeling of a structure for the CLIC1 integral membrane form. The data are suggestive of a large conformational unfolding occurring between the N- and C-domains of CLIC1 upon interaction with the membrane. Consistent with previous findings, the N-terminal domain of CLIC1 is likely to insert into the lipid bilayer, while the C-domain remains in solution on the extravesicular side of the membrane.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Membrana/metabolismo , Canais de Cloreto/química , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Humanos , Modelos Moleculares , Ligação Proteica , Espectrometria de Fluorescência , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA