Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Astrobiology ; 20(8): 977-993, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434374

RESUMO

The paleo-lake floor at the edge of the Jezero delta has been selected as the NASA 2020 rover landing site. In this article, we demonstrate the sequences of lake filling and delta formation and constrain the minimum life span of the Jezero paleo-lake from sedimentological and hydrological analyses. Two main phases of delta evolution can be recognized by utilizing imagery provided by the High Resolution Imaging Science Experiment (NASA Mars Reconnaissance Orbiter) and High Resolution Stereo Camera (ESA Mars Express): (1) basin infilling before the breaching of the Jezero rim and (2) the delta formation itself. Our results suggest that delta formation occurred over a minimum period of 90-550 years of hydrological activity. Breaching of the Jezero rim occurred in at least three distinct episodes, which spanned a far longer time-period than overall delta formation. This evolutionary history implies that the Jezero-lake floor would have been a haven for fine-grained sediment accumulation and hosted an active environment of significant astrobiological importance.


Assuntos
Evolução Química , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Marte , Exobiologia , Lagos/química
2.
Nat Commun ; 11(1): 2067, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372029

RESUMO

Orbital observation has revealed a rich record of fluvial landforms on Mars, with much of this record dating 3.6-3.0 Ga. Despite widespread geomorphic evidence, few analyses of Mars' alluvial sedimentary-stratigraphic record exist, with detailed studies of alluvium largely limited to smaller sand-bodies amenable to study in-situ by rovers. These typically metre-scale outcrop dimensions have prevented interpretation of larger scale channel-morphology and long-term basin evolution, vital for understanding the past Martian climate. Here we give an interpretation of a large sedimentary succession at Izola mensa within the NW Hellas Basin rim. The succession comprises channel and barform packages which together demonstrate that river deposition was already well established >3.7 Ga. The deposits mirror terrestrial analogues subject to low-peak discharge variation, implying that river deposition at Izola was subject to sustained, potentially perennial, fluvial flow. Such conditions would require an environment capable of maintaining large volumes of water for extensive time-periods, necessitating a precipitation-driven hydrological cycle.

3.
Astrobiology ; 20(8): 994-1013, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32466668

RESUMO

Jezero crater has been selected as the landing site for the Mars 2020 Perseverance rover, because it contains a paleolake with two fan-deltas, inlet and outlet valleys. Using the data from the High Resolution Stereo Camera (HRSC) and the High Resolution Imaging Science Experiment (HiRISE), we conducted a quantitative geomorphological study of the inlet valleys of the Jezero paleolake. Results show that the strongest erosion is related to a network of deep valleys that cut into the highland bedrock well upstream of the Jezero crater and likely formed before the formation of the regional olivine-rich unit. In contrast, the lower sections of valleys display poor bedrock erosion and a lack of tributaries but are characterized by the presence of pristine landforms interpreted as fluvial bars from preserved channels, the discharge rates of which have been estimated at 103-104 m3s-1. The valleys' lower sections postdate the olivine-rich unit, are linked directly to the fan-deltas, and are thus formed in an energetic, late stage of activity. Although a Late Noachian age for the fan-deltas' formation is not excluded based on crosscutting relationships and crater counts, this indicates evidence of a Hesperian age with significant implications for exobiology.


Assuntos
Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Compostos de Ferro/química , Lagos/química , Compostos de Magnésio/química , Marte , Silicatos/química , Conjuntos de Dados como Assunto , Exobiologia , Veículos Off-Road , Astronave
4.
J Geophys Res Planets ; 124(2): 374-395, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31007995

RESUMO

The scale of groundwater upwelling on Mars, as well as its relation to sedimentary systems, remains an ongoing debate. Several deep craters (basins) in the northern equatorial regions show compelling signs that large amounts of water once existed on Mars at a planet-wide scale. The presence of water-formed features, including fluvial Gilbert and sapping deltas fed by sapping valleys, constitute strong evidence of groundwater upwelling resulting in long term standing bodies of water inside the basins. Terrestrial field evidence shows that sapping valleys can occur in basalt bedrock and not only in unconsolidated sediments. A hypothesis that considers the elevation differences between the observed morphologies and the assumed basal groundwater level is presented and described as the "dike-confined water" model, already present on Earth and introduced for the first time in the Martian geological literature. Only the deepest basins considered in this study, those with bases deeper than -4000 m in elevation below the Mars datum, intercepted the water-saturated zone and exhibit evidence of groundwater fluctuations. The discovery of these groundwater discharge sites on a planet-wide scale strongly suggests a link between the putative Martian ocean and various configurations of sedimentary deposits that were formed as a result of groundwater fluctuations during the Hesperian period. This newly recognized evidence of water-formed features significantly increases the chance that biosignatures could be buried in the sediment. These deep basins (groundwater-fed lakes) will be of interest to future exploration missions as they might provide evidence of geological conditions suitable for life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA