Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Mol Psychiatry ; 29(7): 2185-2198, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38454085

RESUMO

Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like deficits and demonstrated an antidepressant-like effect, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescuing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.


Assuntos
Modelos Animais de Doenças , Neurogênese , Neuroglia , Neurônios , Animais , Neurogênese/fisiologia , Neuroglia/metabolismo , Ratos , Masculino , Neurônios/metabolismo , Ansiedade/metabolismo , Transtorno Depressivo Maior/metabolismo , Ratos Transgênicos , Giro Denteado/metabolismo , Hipocampo/metabolismo , Emoções/fisiologia , Plasticidade Neuronal/fisiologia , Diferenciação Celular/fisiologia
2.
Neurobiol Dis ; 195: 106500, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614275

RESUMO

Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.


Assuntos
Vias Autônomas , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Animais , Vias Autônomas/imunologia , Sistema Nervoso Autônomo/fisiopatologia , Sistema Nervoso Autônomo/imunologia
3.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175391

RESUMO

The regional heterogeneity of microglia was first described a century ago by Pio del Rio Hortega. Currently, new information on microglia heterogeneity throughout central nervous system (CNS) regions is being revealed by high-throughput techniques. It remains unclear whether these spatial specificities translate into different microglial behaviors in vitro. We cultured microglia isolated from the cortex and spinal cord and analyzed the effect of the CNS spatial source on behavior in vitro by applying the same experimental protocol and culture conditions. We analyzed the microglial cell numbers, function, and morphology and found a distinctive in vitro phenotype. We found that microglia were present in higher numbers in the spinal-cord-derived glial cultures, presenting different expressions of inflammatory genes and a lower phagocytosis rate under basal conditions or after activation with LPS and IFN-γ. Morphologically, the cortical microglial cells were more complex and presented longer ramifications, which were also observed in vivo in CX3CR1+/GFP transgenic reporter mice. Collectively, our data demonstrated that microglial behavior in vitro is defined according to specific spatial characteristics acquired by the tissue. Thus, our study highlights the importance of microglia as a source of CNS for in vitro studies.


Assuntos
Sistema Nervoso Central , Microglia , Animais , Camundongos , Microglia/metabolismo , Neuroglia , Medula Espinal , Fagocitose/fisiologia , Camundongos Transgênicos
4.
Med Res Rev ; 42(2): 850-896, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34783046

RESUMO

The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.


Assuntos
Transplante de Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Animais , Humanos , Mamíferos , Medicina Regenerativa , Secretoma , Traumatismos da Medula Espinal/terapia
5.
Am J Pathol ; 191(3): 487-502, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307037

RESUMO

Endoplasmic reticulum (ER) stress is shown to promote nucleus pulposus (NP) cell apoptosis and intervertebral disc degeneration. However, little is known about ER stress regulation by the hypoxic disc microenvironment and its contribution to extracellular matrix homeostasis. NP cells were cultured under hypoxia (1% partial pressure of oxygen) to assess ER stress status, and gain-of-function and loss-of-function approaches were used to assess the role of hypoxia-inducible factor (HIF)-1α in this pathway. In addition, the contribution of ER stress induction on the NP cell secretome was assessed by a nontargeted quantitative proteomic analysis by sequential windowed data independent acquisition of the total high-resolution mass spectra-mass spectrometry. NP cells exhibited a lower ER stress burden under hypoxia. Knockdown of HIF-1α increased C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) levels, whereas HIF-1α stabilization decreased the expression of ER stress markers Ddit3, Hsp5a, Atf6, and Eif2a. Interestingly, ER stress inducers tunicamycin and thapsigargin induced HIF-1α activity under hypoxia while promoting the unfolded protein response. NP cell secretome analysis demonstrated an impact of ER stress induction on extracellular matrix secretion, with decreases in collagens and cell adhesion-related proteins. Moreover, analysis of transcriptomic data of NP tissues from aged mice and degenerated human discs showed higher levels of unfolded protein response markers and decreased levels of matrix components. Our study shows, for the first time, that hypoxia and HIF-1α attenuate ER stress responses in NP cells, and ER stress promotes inefficient extracellular matrix secretion under hypoxia.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/fisiopatologia , Núcleo Pulposo/patologia , Animais , Proteínas da Matriz Extracelular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Pulposo/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430308

RESUMO

Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.


Assuntos
Traumatismos da Medula Espinal , Humanos , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Neuroproteção
7.
Glia ; 69(3): 513-531, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33052610

RESUMO

The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.


Assuntos
Doenças do Sistema Nervoso Central , Neuroglia , Animais , Diferenciação Celular , Doenças do Sistema Nervoso Central/terapia , Neurônios , Células-Tronco
8.
Cytotherapy ; 23(10): 894-901, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34059421

RESUMO

BACKGROUND AIMS: The capacity of the secretome from bone marrow-derived mesenchymal stem cells (BMSCs) to prevent dopaminergic neuron degeneration caused by overexpression of alpha-synuclein (α-syn) was explored using two Caenorhabditis elegans models of Parkinson's disease (PD). METHODS: First, a more predictive model of PD that overexpresses α-syn in dopamine neurons was subjected to chronic treatment with secretome. This strain displays progressive dopaminergic neurodegeneration that is age-dependent. Following chronic treatment with secretome, the number of intact dopaminergic neurons was determined. Following these initial experiments, a C. elegans strain that overexpresses α-syn in body wall muscle cells was used to determine the impact of hBMSC secretome on α-syn inclusions. Lastly, in silico analysis of the components that constitute the secretome was performed. RESULTS: The human BMSC (hBMSC) secretome induced a neuroprotective effect, leading to reduced dopaminergic neurodegeneration. Moreover, in animals submitted to chronic treatment with secretome, the number of α-syn inclusions was reduced, indicating that the secretome of MSCs was possibly contributing to the degradation of those structures. In silico analysis identified possible suppressors of α-syn proteotoxicity, including growth factors and players in the neuronal protein quality control mechanisms. CONCLUSIONS: The present findings indicate that hBMSC secretome has the potential to be used as a disease-modifying strategy in future PD regenerative medicine approaches.


Assuntos
Células-Tronco Mesenquimais , Doença de Parkinson , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Humanos , Doença de Parkinson/terapia , alfa-Sinucleína
9.
Cell Mol Life Sci ; 77(24): 5171-5188, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32617639

RESUMO

Glial cells have been identified more than 100 years ago, and are known to play a key role in the central nervous system (CNS) function. A recent piece of evidence is emerging showing that in addition to the capacity of CNS modulation and homeostasis, glial cells are also being looked like as a promising cell source not only to study CNS pathologies initiation and progression but also to the establishment and development of new therapeutic strategies. Thus, in the present review, we will discuss the current evidence regarding glial cells' contribution to neurodegenerative diseases as Parkinson's disease, providing cellular, molecular, functional, and behavioral data supporting its active role in disease initiation, progression, and treatment. As so, considering their functional relevance, glial cells may be important to the understanding of the underlying mechanisms regarding neuronal-glial networks in neurodegeneration/regeneration processes, which may open new research opportunities for their future use as a target or treatment in human clinical trials.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neuroglia/transplante , Neurônios/transplante , Doença de Parkinson/terapia , Sistema Nervoso Central/patologia , Humanos , Degeneração Neural/patologia , Degeneração Neural/terapia , Neurônios/patologia , Doença de Parkinson/patologia
10.
Eur J Neurosci ; 52(4): 3242-3255, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31958881

RESUMO

Animal models of human diseases are crucial experimental tools to investigate the mechanisms involved in disease pathogenesis and to develop new therapies. In spite of the numerous animal models currently available that reproduce several neuropathological features of Parkinson disease (PD), it is challenging to have one that consistently recapitulates human PD conditions in both motor behaviors and biochemical pathological outcomes. Given that, we have implemented a new paradigm to expose rats to a chronic low dose of paraquat (PQ), using osmotic minipumps and characterized the developed pathologic features over time. The PQ exposure paradigm used lead to a rodent model of PD depicting progressive nigrostriatal dopaminergic neurodegeneration, characterized by a 41% significant loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc), a significant decrease of 18% and 40% of dopamine levels in striatum at week 5 and 8, respectively, and a significant 1.5-fold decrease in motor performance. We observed a significant increase of microglia activation state, sustained levels of α-synucleinopathy and increased oxidative stress markers in the SNpc. In summary, this is an explorative study that allowed to characterize an improved PQ-based rat model that recapitulates cardinal features of PD and may represent an attractive tool to investigate several mechanisms underlying the various aspects of PD pathogenesis as well as for the validation of the efficacy of new therapeutic approaches that targets different mechanisms involved in PD neurodegeneration.


Assuntos
Paraquat , Doença de Parkinson , Animais , Corpo Estriado , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Paraquat/toxicidade , Parte Compacta da Substância Negra , Ratos , Substância Negra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA