RESUMO
COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.
Assuntos
Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Microglia/imunologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/patologia , Comunicação Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Inflamação , Ativação Linfocitária , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Bulbo Olfatório/imunologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Insuficiência Respiratória/imunologia , Insuficiência Respiratória/patologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
BACKGROUND: The determinants of the response to checkpoint immunotherapy in hepatocellular carcinoma (HCC) remain poorly understood. The organisation of the immune response in the tumour microenvironment (TME) is expected to govern immunotherapy outcomes but spatial immunotypes remain poorly defined. OBJECTIVE: We hypothesised that the deconvolution of spatial immune network architectures could identify clinically relevant immunotypes in HCC. DESIGN: We conducted highly multiplexed imaging mass cytometry on HCC tissues from 101 patients. We performed in-depth spatial single-cell analysis in a discovery and validation cohort to deconvolute the determinants of the heterogeneity of HCC immune architecture and develop a spatial immune classification that was tested for the prediction of immune checkpoint inhibitor (ICI) therapy. RESULTS: Bioinformatic analysis identified 23 major immune, stroma, parenchymal and tumour cell types in the HCC TME. Unsupervised neighbourhood detection based on the spatial interaction of immune cells identified three immune architectures with differing involvement of immune cells and immune checkpoints dominated by either CD8 T-cells, myeloid immune cells or B- and CD4 T-cells. We used these to define three major spatial HCC immunotypes that reflect a higher level of intratumour immune cell organisation: depleted, compartmentalised and enriched. Progression-free survival under ICI therapy differed significantly between the spatial immune types with improved survival of enriched patients. In patients with intratumour heterogeneity, the presence of one enriched area governed long-term survival.
RESUMO
BACKGROUND & AIMS: Autoimmune hepatitis episodes have been described following SARS-CoV-2 infection and vaccination but their pathophysiology remains unclear. Herein, we report the case of a 52-year-old male, presenting with bimodal episodes of acute hepatitis, each occurring 2-3 weeks after BNT162b2 mRNA vaccination. We sought to identify the underlying immune correlates. The patient received oral budesonide, relapsed, but achieved remission under systemic steroids. METHODS: Imaging mass cytometry for spatial immune profiling was performed on liver biopsy tissue. Flow cytometry was performed to dissect CD8 T-cell phenotypes and identify SARS-CoV-2-specific and EBV-specific T cells longitudinally. Vaccine-induced antibodies were determined by ELISA. Data were correlated with clinical laboratory results. RESULTS: Analysis of the hepatic tissue revealed an immune infiltrate quantitatively dominated by activated cytotoxic CD8 T cells with panlobular distribution. An enrichment of CD4 T cells, B cells, plasma cells and myeloid cells was also observed compared to controls. The intrahepatic infiltrate showed enrichment for CD8 T cells with SARS-CoV-2-specificity compared to the peripheral blood. Notably, hepatitis severity correlated longitudinally with an activated cytotoxic phenotype of peripheral SARS-CoV-2-specific, but not EBV-specific, CD8+ T cells or vaccine-induced immunoglobulins. CONCLUSIONS: COVID-19 vaccination can elicit a distinct T cell-dominant immune-mediated hepatitis with a unique pathomechanism associated with vaccination-induced antigen-specific tissue-resident immunity requiring systemic immunosuppression. LAY SUMMARY: Liver inflammation is observed during SARS-CoV-2 infection but can also occur in some individuals after vaccination and shares some typical features with autoimmune liver disease. In this report, we show that highly activated T cells accumulate and are evenly distributed in the different areas of the liver in a patient with liver inflammation following SARS-CoV-2 vaccination. Moreover, within the population of these liver-infiltrating T cells, we observed an enrichment of T cells that are reactive to SARS-CoV-2, suggesting that these vaccine-induced cells can contribute to liver inflammation in this context.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Hepatite A , Hepatite , Vacinas Virais , Anticorpos Antivirais , Vacina BNT162 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Inflamação , Masculino , SARS-CoV-2 , Vacinação/efeitos adversos , Vacinação/métodosRESUMO
BACKGROUND & AIMS: Despite recent translation of immunotherapies into clinical practice, the immunobiology of hepatocellular carcinoma (HCC), in particular the role and clinical relevance of exhausted and liver-resident T cells remain unclear. We therefore dissected the landscape of exhausted and resident T cell responses in the peripheral blood and tumor microenvironment of patients with HCC. METHODS: Lymphocytes were isolated from the blood, tumor and tumor-surrounding liver tissue of patients with HCC (n = 40, n = 10 treated with anti-PD-1 therapy). Phenotype, function and response to anti-PD-1 were analyzed by mass and flow cytometry ex vivo and in vitro, tissue residence was further assessed by immunohistochemistry and imaging mass cytometry. Gene signatures were analyzed in silico. RESULTS: We identified significant enrichment of heterogeneous populations of exhausted CD8+ T cells (TEX) in the tumor microenvironment. Strong enrichment of severely exhausted CD8 T cells expressing multiple immune checkpoints in addition to PD-1 was linked to poor progression-free and overall survival. In contrast, PD-1 was also expressed on a subset of more functional and metabolically active CD103+ tissue-resident memory T cells (TRM) that expressed few additional immune checkpoints and were associated with better survival. TEX enrichment was independent of BCLC stage, alpha-fetoprotein levels or age as a variable for progression-free survival in our cohort. These findings were in line with in silico gene signature analysis of HCC tumor transcriptomes from The Cancer Genome Atlas. A higher baseline TRM/TEX ratio was associated with disease control in anti-PD-1-treated patients. CONCLUSION: Our data provide information on the role of peripheral and intratumoral TEX-TRM dynamics in determining outcomes in patients with HCC. The dynamics between exhausted and liver-resident T cells have implications for immune-based diagnostics, rational patient selection and monitoring during HCC immunotherapies. LAY SUMMARY: The role of the immune response in hepatocellular carcinoma (HCC) remains unclear. T cells can mediate protection against tumor cells but are frequently dysfunctional and exhausted in cancer. We found that patients with a predominance of exhausted CD8+ T cells (TEX) had poor survival compared to patients with a predominance of tissue-resident memory T cells (TRM). This correlated with the molecular profile, metabolic and functional status of these cell populations. The enrichment of TEX was independently associated with prognosis in addition to disease stage, age and tumor markers. A high TRM proportion was also associated with better outcomes following checkpoint therapy. Thus, these T-cell populations are novel biomarkers with relevance in HCC.
Assuntos
Carcinoma Hepatocelular , Internato e Residência , Neoplasias Hepáticas , Linfócitos T CD8-Positivos , Humanos , Microambiente TumoralRESUMO
BACKGROUND: Imaging mass cytometry (IMC) combines the principles of flow cytometry and mass spectrometry (MS) with laser scanning spatial resolution and offers unique advantages for the analysis of tissue samples in unprecedented detail. In contrast to conventional immunohistochemistry, which is limited in its application by the number of possible fluorochrome combinations, IMC uses isoptope-coupled antibodies that allow multiplex analysis of up to 40 markers in the same tissue section simultaneously. METHODS: In this report we use IMC to analyze formalin-fixed, paraffin-embedded conjunctival tissue. We performed a 18-biomarkers IMC analysis of conjunctival tissue to determine and summarize the possibilities, relevance and limitations of IMC for deciphering the biology and pathology of ocular diseases. RESULTS: Without modifying the manufacturer's protocol, we observed positive and plausible staining for 12 of 18 biomarkers. Subsequent bioinformatical single-cell analysis and phenograph clustering identified 24 different cellular clusters with distinct expression profiles with respect to the markers used. CONCLUSIONS: IMC enables highly multiplexed imaging of ocular samples at subcellular resolution. IMC is an innovative and feasible method, providing new insights into ocular disease pathogenesis that will be valuable for basic research, drug discovery and clinical diagnostics.
Assuntos
Citometria por Imagem , Processamento de Imagem Assistida por Computador , Citometria de Fluxo , Espectrometria de Massas , Coloração e RotulagemRESUMO
Cancer treatment with anti-PD-1 immunotherapy can cause central nervous system immune-related adverse events (CNS-irAEs). The role of microglia in anti-PD-1 immunotherapy-induced CNS-irAEs is unclear. We found that anti-PD-1 treatment of mice caused morphological signs of activation and major histocompatibility complex (MHC) class II up-regulation on microglia. Functionally, anti-PD-1 treatment induced neurocognitive deficits in mice, independent of T cells, B cells, and natural killer cells. Instead, we found that microglia mediated these CNS-irAEs. Single-cell RNA sequencing revealed major transcriptional changes in microglia upon anti-PD-1 treatment. The anti-PD-1 effects were mediated by anti-PD-1 antibodies interacting directly with microglia and were not secondary to peripheral T cell activation. Using a proteomics approach, we identified spleen tyrosine kinase (Syk) as a potential target in activated microglia upon anti-PD-1 treatment. Syk inhibition reduced microglia activation and improved neurocognitive function without impairing anti-melanoma effects. Moreover, we analyzed CNS tissue from a patient cohort that had received anti-PD-1 treatment. Imaging mass cytometry revealed that anti-PD-1 treatment of patients was associated with increased surface marker expression indicative of microglia activation. In summary, we identified a disease-promoting role for microglia in CNS-irAEs driven by Syk and provide an inhibitor-based approach to interfere with this complication after anti-PD-1 immunotherapy.
Assuntos
Sistema Nervoso Central , Imunoterapia , Microglia , Receptor de Morte Celular Programada 1 , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Imunoterapia/efeitos adversos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Humanos , Sistema Nervoso Central/patologia , Sistema Nervoso Central/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Quinase Syk/metabolismo , CamundongosRESUMO
Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFß-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.
Assuntos
MAP Quinase Quinase Quinases , Microglia , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Animais , Camundongos , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Microglia/imunologia , Microglia/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Linfoma de Células B/imunologia , Antígenos CD19/imunologia , Feminino , Linfócitos T/imunologia , Transdução de SinaisRESUMO
Locally advanced oesophageal adenocarcinoma (EAC) remains difficult to treat because of common resistance to neoadjuvant therapy and high recurrence rates. The ecological and evolutionary dynamics responsible for treatment failure are incompletely understood. Here, we performed a comprehensive multi-omic analysis of samples collected from EAC patients in the MEMORI clinical trial, revealing major changes in gene expression profiles and immune microenvironment composition that did not appear to be driven by changes in clonal composition. Multi-region multi-timepoint whole exome (300x depth) and paired transcriptome sequencing was performed on 27 patients pre-, during and after neoadjuvant treatment. EAC showed major transcriptomic changes during treatment with upregulation of immune and stromal pathways and oncogenic pathways such as KRAS, Hedgehog and WNT. However, genetic data revealed that clonal sweeps were rare, suggesting that gene expression changes were not clonally driven. Additional longitudinal image mass cytometry was performed in a subset of 15 patients and T-cell receptor sequencing in 10 patients, revealing remodelling of the T-cell compartment during treatment and other shifts in microenvironment composition. The presence of immune escape mechanisms and a lack of clonal T-cell expansions were linked to poor clinical treatment response. This study identifies profound transcriptional changes during treatment with limited evidence that clonal replacement is the cause, suggesting phenotypic plasticity and immune dynamics as mechanisms for therapy resistance with pharmacological relevance.
RESUMO
Despite recent advances in cancer immunotherapy, certain tumor types, such as Glioblastomas, are highly resistant due to their tumor microenvironment disabling the anti-tumor immune response. Here we show, by applying an in-silico multidimensional model integrating spatially resolved and single-cell gene expression data of 45,615 immune cells from 12 tumor samples, that a subset of Interleukin-10-releasing HMOX1+ myeloid cells, spatially localizing to mesenchymal-like tumor regions, drive T-cell exhaustion and thus contribute to the immunosuppressive tumor microenvironment. These findings are validated using a human ex-vivo neocortical glioblastoma model inoculated with patient derived peripheral T-cells to simulate the immune compartment. This model recapitulates the dysfunctional transformation of tumor infiltrating T-cells. Inhibition of the JAK/STAT pathway rescues T-cell functionality both in our model and in-vivo, providing further evidence of IL-10 release being an important driving force of tumor immune escape. Our results thus show that integrative modelling of single cell and spatial transcriptomics data is a valuable tool to interrogate the tumor immune microenvironment and might contribute to the development of successful immunotherapies.
Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Interleucina-10/metabolismo , Células Mieloides/metabolismo , Linfócitos T/imunologia , Adulto , Idoso , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Voluntários Saudáveis , Heme Oxigenase-1/metabolismo , Humanos , Imunoterapia/métodos , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Neocórtex/citologia , Neocórtex/imunologia , Neocórtex/patologia , Cultura Primária de Células , RNA-Seq , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Análise de Célula Única , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Técnicas de Cultura de Tecidos , Evasão Tumoral , Microambiente Tumoral/imunologiaRESUMO
Glioblastomas are malignant tumors of the central nervous system hallmarked by subclonal diversity and dynamic adaptation amid developmental hierarchies. The source of dynamic reorganization within the spatial context of these tumors remains elusive. Here, we characterized glioblastomas by spatially resolved transcriptomics, metabolomics, and proteomics. By deciphering regionally shared transcriptional programs across patients, we infer that glioblastoma is organized by spatial segregation of lineage states and adapts to inflammatory and/or metabolic stimuli, reminiscent of the reactive transformation in mature astrocytes. Integration of metabolic imaging and imaging mass cytometry uncovered locoregional tumor-host interdependence, resulting in spatially exclusive adaptive transcriptional programs. Inferring copy-number alterations emphasizes a spatially cohesive organization of subclones associated with reactive transcriptional programs, confirming that environmental stress gives rise to selection pressure. A model of glioblastoma stem cells implanted into human and rodent neocortical tissue mimicking various environments confirmed that transcriptional states originate from dynamic adaptation to various environments.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Metabolômica/métodosRESUMO
Background: Retinal neovascularization (RNV) membranes can lead to a tractional retinal detachment, the primary reason for severe vision loss in end-stage disease proliferative diabetic retinopathy (PDR). The aim of this study was to characterize the molecular, cellular and immunological features of RNV in order to unravel potential novel drug treatments for PDR. Methods: A total of 43 patients undergoing vitrectomy for PDR, macular pucker or macular hole (control patients) were included in this study. The surgically removed RNV and epiretinal membranes were analyzed by RNA sequencing, single-cell based Imaging Mass Cytometry and conventional immunohistochemistry. Immune cells of the vitreous body, also known as hyalocytes, were isolated from patients with PDR by flow cytometry, cultivated and characterized by immunohistochemistry. A bioinformatical drug repurposing approach was applied in order to identify novel potential drug options for end-stage diabetic retinopathy disease. Results: The in-depth transcriptional and single-cell protein analysis of diabetic RNV tissue samples revealed an accumulation of endothelial cells, macrophages and myofibroblasts as well as an abundance of secreted ECM proteins such as SPARC, FN1 and several types of collagen in RNV tissue. The immunohistochemical staining of cultivated vitreal hyalocytes from patients with PDR showed that hyalocytes express α-SMA (alpha-smooth muscle actin), a classic myofibroblast marker. According to our drug repurposing analysis, imatinib emerged as a potential immunomodulatory drug option for future treatment of PDR. Conclusion: This study delivers the first in-depth transcriptional and single-cell proteomic characterization of RNV tissue samples. Our data suggest an important role of hyalocyte-to-myofibroblast transdifferentiation in the pathogenesis of diabetic vitreoretinal disease and their modulation as a novel possible clinical approach.