Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nephrology (Carlton) ; 28(4): 227-233, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651874

RESUMO

AIM: To develop a dosing and monitoring protocol to achieve therapeutic vancomycin levels on intermittent haemodialysis. METHODS: We identified 15 vancomycin treatment courses received by patients on intermittent haemodialysis at a district health board in Auckland, New Zealand. Demographic, biochemical and clinical parameters were gathered from their health records. We subsequently devised and implemented a new vancomycin protocol consisting of weight-based loading dose, and subsequent dose titration according to same-day measured pre-dialysis levels. We then re-audited 16 vancomycin treatment courses to assess the performance of the protocol. RESULTS: A significantly higher proportion of vancomycin levels were within the target range (15-20 mg/L) following the implementation of protocol, from 23% to 46% (p < .005). Additionally, a greater proportion of treatment courses had >50% of pre-dialysis levels within the target range, rising from 13% to 56% (p < .01). In the pre-protocol group, 19 out of 117 doses of vancomycin were withheld during treatment, compared to 1 out of 118 doses in the post-protocol group. A total of 62% of total maintenance doses were administered in adherence to protocol. Length of hospital stay and number of positive blood cultures while on treatment were reduced. CONCLUSIONS: Our initial audit revealed deficiencies in our clinical practice in the absence of a local vancomycin protocol for patients receiving intermittent haemodialysis. Following the implementation of our novel protocol, there was an improvement in therapeutic levels and fewer doses were withheld. Our sample size was too small to allow for interpretation of clinical outcome data.


Assuntos
Antibacterianos , Vancomicina , Humanos , Antibacterianos/uso terapêutico , Diálise Renal/efeitos adversos , Tempo de Internação , Nova Zelândia , Monitoramento de Medicamentos
2.
J Am Soc Nephrol ; 33(6): 1120-1136, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35292439

RESUMO

BACKGROUND: Glomerular endothelial cell (GEnC) fenestrations are recognized as an essential component of the glomerular filtration barrier, yet little is known about how they are regulated and their role in disease. METHODS: We comprehensively characterized GEnC fenestral and functional renal filtration changes including measurement of glomerular Kf and GFR in diabetic mice (BTBR ob-/ob- ). We also examined and compared human samples. We evaluated Eps homology domain protein-3 (EHD3) and its association with GEnC fenestrations in diabetes in disease samples and further explored its role as a potential regulator of fenestrations in an in vitro model of fenestration formation using b.End5 cells. RESULTS: Loss of GEnC fenestration density was associated with decreased filtration function in diabetic nephropathy. We identified increased diaphragmed fenestrations in diabetes, which are posited to increase resistance to filtration and further contribute to decreased GFR. We identified decreased glomerular EHD3 expression in diabetes, which was significantly correlated with decreased fenestration density. Reduced fenestrations in EHD3 knockdown b.End5 cells in vitro further suggested a mechanistic role for EHD3 in fenestration formation. CONCLUSIONS: This study demonstrates the critical role of GEnC fenestrations in renal filtration function and suggests EHD3 may be a key regulator, loss of which may contribute to declining glomerular filtration function through aberrant GEnC fenestration regulation. This points to EHD3 as a novel therapeutic target to restore filtration function in disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Fenômenos Fisiológicos do Sistema Urinário , Animais , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glomérulos Renais/metabolismo , Camundongos
3.
Diabetologia ; 65(5): 879-894, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35211778

RESUMO

AIMS/HYPOTHESIS: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. METHODS: We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. RESULTS: In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. CONCLUSIONS/INTERPRETATION: The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Angiopoietina-1/metabolismo , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Microcirculação , Ratos
4.
J Child Psychol Psychiatry ; 63(6): 674-682, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34414570

RESUMO

BACKGROUND: Autism spectrum disorder is a diagnosis that is increasingly applied; however, previous studies have conflicting findings whether rates of diagnosis rates continue to grow in the UK. This study tested whether the proportion of people receiving a new autism diagnosis has been increasing over a twenty-year period, both overall and by subgroups. METHOD: Population-based study utilizing the Clinical Practice Research Datalink (CPRD) primary care database, which contains patients registered with practices contributing data to the CPRD between 1998 and 2018 (N = 6,786,212 in 1998 to N = 9,594,598 in 2018). 65,665 patients had a diagnosis of autism recorded in 2018. Time trend of new (incident) cases of autism diagnosis was plotted for all, and stratified by gender, diagnostic subtypes, and developmental stage: infancy and preschool, 0-5 years old; childhood, 6-11 years old; adolescence, 12-19 years old; adults, over 19 years old. RESULTS: There was a 787%, exponential increase in recorded incidence of autism diagnoses between 1998 and 2018; R2 = 0.98, exponentiated coefficient = 1.07, 95% CI [1.06, 1.08], p < .001. The increase in diagnoses was greater for females than males (exponentiated interaction coefficient = 1.02, 95% CI [1.01, 1.03], p < .001) and moderated by age band, with the greatest rises in diagnostic incidence among adults (exponentiated interaction coefficient = 1.06, 95% CI [1.04, 1.07], p < .001). CONCLUSIONS: Increases could be due to growth in prevalence or, more likely, increased reporting and application of diagnosis. Rising diagnosis among adults, females and higher functioning individuals suggest augmented recognition underpins these changes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Prevalência , Reino Unido/epidemiologia , Adulto Jovem
5.
Nephrology (Carlton) ; 25(1): 14-21, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30838732

RESUMO

AIM: Patient-reported outcome measures (PROMs) and patient-reported experience measures (PREMs) are increasingly used in research to quantify how patients feel and function, and their experiences of care, however, knowledge of their utilization in routine nephrology is limited. METHODS: The Australia and New Zealand Dialysis and Transplant Registry (ANZDATA) PROMs working group conducted a prospective cross-sectional survey of PROMs/PREMs use among renal 'parent hospitals'. One survey per hospital was completed (August-November 2017). Descriptive statistics reported type and frequency of measures used and purpose of use. RESULTS: Survey response rate was 100%. Fifty-five of 79 hospitals (70%) used at least one PROMs or PREMs for specific patient groups. PROMs were more likely to be collected from patients receiving comprehensive conservative care (45% of hospitals) than dialysis patients (32%, 31% and 28% of hospitals for home haemodialysis, peritoneal dialysis and facility dialysis, respectively). Few renal transplanting hospitals (3%) collected PROMs. The Integrated Palliative Outcome Scale-Renal (IPOS-Renal) (40% of units), and the Euro-Qol (EQ-5D-5 L) (25%), were most frequently used. The main reason for collecting PROMs was to inform clinical care (58%), and for PREMs was to fulfil private dialysis/hospital provider requirements (25%). The most commonly reported reason for not using PROMs in 24 hospitals was insufficient staff resources (79%). Sixty-two hospitals (78%) expressed interest in participating in a registry-based PROMs trial. CONCLUSION: Many renal hospitals in Australia and New Zealand collect PROMs and/or PREMs as part of clinical care with use varying by treatment modality. Resources are a key barrier to PROMs use.


Assuntos
Unidades Hospitalares de Hemodiálise , Nefropatias/terapia , Nefrologia , Medidas de Resultados Relatados pelo Paciente , Satisfação do Paciente , Terapia de Substituição Renal , Austrália , Estudos Transversais , Pesquisas sobre Atenção à Saúde , Necessidades e Demandas de Serviços de Saúde , Nível de Saúde , Humanos , Nefropatias/diagnóstico , Nefropatias/fisiopatologia , Nefropatias/psicologia , Avaliação das Necessidades , Nova Zelândia , Estudos Prospectivos , Indicadores de Qualidade em Assistência à Saúde , Qualidade de Vida , Sistema de Registros , Resultado do Tratamento
6.
Proc Natl Acad Sci U S A ; 113(20): 5503-7, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140648

RESUMO

Nanoactuators and nanomachines have long been sought after, but key bottlenecks remain. Forces at submicrometer scales are weak and slow, control is hard to achieve, and power cannot be reliably supplied. Despite the increasing complexity of nanodevices such as DNA origami and molecular machines, rapid mechanical operations are not yet possible. Here, we bind temperature-responsive polymers to charged Au nanoparticles, storing elastic energy that can be rapidly released under light control for repeatable isotropic nanoactuation. Optically heating above a critical temperature [Formula: see text] = 32 °C using plasmonic absorption of an incident laser causes the coatings to expel water and collapse within a microsecond to the nanoscale, millions of times faster than the base polymer. This triggers a controllable number of nanoparticles to tightly bind in clusters. Surprisingly, by cooling below [Formula: see text] their strong van der Waals attraction is overcome as the polymer expands, exerting nanoscale forces of several nN. This large force depends on van der Waals attractions between Au cores being very large in the collapsed polymer state, setting up a tightly compressed polymer spring which can be triggered into the inflated state. Our insights lead toward rational design of diverse colloidal nanomachines.

7.
J Am Chem Soc ; 140(4): 1263-1266, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29320184

RESUMO

We report an unexpected rearrangement of a deprotonated picolyl-functionalized N-heterocyclic carbene (NHC) ligand from N,C-chelate to N,N-chelate in three-legged piano-stool Fe(II) and Ru(II) complexes. The reaction mechanism has been explored for one of the Fe(II) complexes. Experimental and computational studies suggest an unusual intermediate featuring a four-membered chelate ring, where the NHC and the α-carbon of one of the N-substituents coordinate to the Fe(II) center. A possible Fe-alkylidene intermediate has also been predicted by computations.

8.
Am J Physiol Renal Physiol ; 315(5): F1370-F1384, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29923763

RESUMO

To investigate human glomerular structure under conditions of physiological perfusion, we have analyzed fresh and perfusion-fixed normal human glomeruli at physiological hydrostatic and oncotic pressures using serial resin section reconstruction, confocal, multiphoton, and electron microscope imaging. Afferent and efferent arterioles (21.5 ± 1.2 µm and 15.9 ± 1.2 µm diameter), recognized from vascular origins, lead into previously undescribed wider regions (43.2 ± 2.8 µm and 38.4 ± 4.9 µm diameter) we have termed vascular chambers (VCs) embedded in the mesangium of the vascular pole. Afferent VC (AVC) volume was 1.6-fold greater than efferent VC (EVC) volume. From the AVC, long nonbranching high-capacity conduit vessels ( n = 7) (Con; 15.9 ± 0.7 µm diameter) led to the glomerular edge, where branching was more frequent. Conduit vessels have fewer podocytes than filtration capillaries. VCs were confirmed in fixed and unfixed specimens with a layer of banded collagen identified in AVC walls by multiphoton and electron microscopy. Thirteen highly branched efferent first-order vessels (E1; 9.9 ± 0.4 µm diameter) converge on the EVC, draining into the efferent arteriole (15.9 ± 1.2 µm diameter). Banded collagen was scarce around EVCs. This previously undescribed branching topology does not conform to the branching of minimum energy expenditure (Murray's law), suggesting that even distribution of pressure/flow to the filtration capillaries is more important than maintaining the minimum work required for blood flow. We propose that AVCs act as plenum manifolds possibly aided by vortical flow in distributing and balancing blood flow/pressure to conduit vessels supplying glomerular lobules. These major adaptations to glomerular capillary structure could regulate hemodynamic pressure and flow in human glomerular capillaries.


Assuntos
Hemodinâmica , Glomérulos Renais/irrigação sanguínea , Microcirculação , Microvasos/fisiologia , Circulação Renal , Humanos , Pressão Hidrostática , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência por Excitação Multifotônica , Microvasos/ultraestrutura , Modelos Biológicos , Podócitos/fisiologia , Fixação de Tecidos
9.
Kidney Int ; 93(5): 1086-1097, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29433915

RESUMO

Increased urinary albumin excretion is a key feature of glomerular disease but has limitations as a measure of glomerular permeability. Here we describe a novel assay to measure the apparent albumin permeability of single capillaries in glomeruli, isolated from perfused kidneys cleared of red blood cells. The rate of decline of the albumin concentration within the capillary lumen was quantified using confocal microscopy and used to calculate apparent permeability. The assay was extensively validated and provided robust, reproducible estimates of glomerular albumin permeability. These values were comparable with previous in vivo data, showing this assay could be applied to human as well as rodent glomeruli. To confirm this, we showed that targeted endothelial glycocalyx disruption resulted in increased glomerular albumin permeability in mice. Furthermore, incubation with plasma from patients with post-transplant recurrence of nephrotic syndrome increased albumin permeability in rat glomeruli compared to remission plasma. Finally, in glomeruli isolated from rats with early diabetes there was a significant increase in albumin permeability and loss of endothelial glycocalyx, both of which were ameliorated by angiopoietin-1. Thus, a glomerular permeability assay, producing physiologically relevant values with sufficient sensitivity to measure changes in glomerular permeability and independent of tubular function, was developed and validated. This assay significantly advances the ability to study biology and disease in rodent and human glomeruli.


Assuntos
Bioensaio/métodos , Capilares/metabolismo , Permeabilidade Capilar , Glomérulos Renais/irrigação sanguínea , Albumina Sérica/metabolismo , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Angiopoietina-1/farmacologia , Animais , Capilares/efeitos dos fármacos , Capilares/fisiopatologia , Permeabilidade Capilar/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Glicocálix/metabolismo , Humanos , Técnicas In Vitro , Cinética , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Síndrome Nefrótica/sangue , Síndrome Nefrótica/fisiopatologia , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
10.
Health Care Manag Sci ; 21(2): 177-191, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28361346

RESUMO

Patients presenting with chest pain at an emergency department in the United Kingdom receive troponin tests to assess the likelihood of an acute myocardial infarction (AMI). Until recently, serial testing with two blood samples separated by at least six hours was necessary in order to analyse the change in troponin levels over time. New high-sensitivity troponin tests, however, allow the inter-test time to be shortened from six to three hours. Recent evidence also suggests that the new generation of troponin tests can be used to rule out AMI on the basis of a single test if patients at low risk of AMI present with very low cardiac troponin levels more than three hours after onset of worst pain. This paper presents a discrete event simulation model to assess the likely impact on the number of hospital admissions if emergency departments adopt strategies for serial and single testing based on the use of high-sensitivity troponin. Data sets from acute trusts in the South West of England are used to quantify the resulting benefits.


Assuntos
Dor no Peito/diagnóstico , Hospitalização/estatística & dados numéricos , Infarto do Miocárdio/diagnóstico , Troponina C/sangue , Idoso , Biomarcadores/sangue , Dor no Peito/sangue , Simulação por Computador , Procedimentos Clínicos , Diagnóstico Diferencial , Serviço Hospitalar de Emergência , Inglaterra , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
J Physiol ; 595(19): 6281-6298, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28574576

RESUMO

KEY POINTS: Progressive depletion of all vascular endothelial growth factor A (VEGF-A) splice isoforms from the kidney results in proteinuria and increased glomerular water permeability, which are both rescued by over-expression of VEGF-A165 b only. VEGF-A165 b rescues the increase in glomerular basement membrane and podocyte slit width, as well as the decrease in sub-podocyte space coverage, produced by VEGF-A depletion. VEGF-A165 b restores the expression of platelet endothelial cell adhesion molecule in glomerular endothelial cells and glomerular capillary circumference. VEGF-A165 b has opposite effects to VEGF-A165 on the expression of genes involved in endothelial cell migration and proliferation. ABSTRACT: Chronic kidney disease is strongly associated with a decrease in the expression of vascular endothelial growth factor A (VEGF-A). However, little is known about the contribution of VEGF-A splice isoforms to kidney physiology and pathology. Previous studies suggest that the splice isoform VEGF-A165 b (resulting from alternative usage of a 3' splice site in the terminal exon) is protective for kidney function. In the present study, we show, in a quad-transgenic model, that over-expression of VEGF-A165 b alone is sufficient to rescue the increase in proteinuria, as well as glomerular water permeability, in the context of progressive depletion of all VEGF-A isoforms from the podocytes. Ultrastructural studies show that the glomerular basement membrane is thickened, podocyte slit width is increased and sub-podocyte space coverage is reduced when VEGF-A is depleted, all of which are rescued in VEGF-A165 b over-expressors. VEGF-A165 b restores the expression of platelet endothelial cell adhesion molecule-1 in glomerular endothelial cells and glomerular capillary circumference. Mechanistically, it increases VEGF receptor 2 expression both in vivo and in vitro and down-regulates genes involved in migration and proliferation of endothelial cells, otherwise up-regulated by the canonical isoform VEGF-A165 . The results of the present study indicate that manipulation of VEGF-A splice isoforms could be a novel therapeutic avenue in chronic glomerular disease.


Assuntos
Rim/metabolismo , Proteinúria/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Humanos , Rim/patologia , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Podócitos/metabolismo , Podócitos/ultraestrutura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteinúria/genética , Proteinúria/patologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
12.
J Physiol ; 595(15): 5015-5035, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28524373

RESUMO

KEY POINTS: We have developed novel techniques for paired, direct, real-time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability. Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel. The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth. Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin. ABSTRACT: The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real-time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17-3.02 µm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 µm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same vessels in a time-dependent manner, with changes in all three true vessel wall permeability coefficients (hydraulic conductivity, reflection coefficient and diffusive solute permeability). These novel technologies expand the range of techniques that permit direct studies of the structure of the endothelial glycocalyx and dependent microvascular functions in vivo, and demonstrate that sialic acid residues within the endothelial glycocalyx are critical regulators of microvascular permeability to both water and albumin.


Assuntos
Permeabilidade Capilar , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Microvasos/metabolismo , Ácidos Siálicos/metabolismo , Albuminas/metabolismo , Animais , Células Endoteliais/ultraestrutura , Glicocálix/ultraestrutura , Masculino , Mesentério/irrigação sanguínea , Microscopia Eletrônica de Transmissão , Microvasos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Água/metabolismo
13.
Small ; 12(13): 1788-96, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26865562

RESUMO

Microfluidic microdroplets have increasingly found application in biomolecular sensing as well as nanomaterials growth. More recently the synthesis of plasmonic nanostructures in microdroplets has led to surface-enhanced Raman spectroscopy (SERS)-based sensing applications. However, the study of nanoassembly in microdroplets has previously been hindered by the lack of on-chip characterization tools, particularly at early timescales. Enabled by a refractive index matching microdroplet formulation, dark-field spectroscopy is exploited to directly track the formation of nanometer-spaced gold nanoparticle assemblies in microdroplets. Measurements in flow provide millisecond time resolution through the assembly process, allowing identification of a regime where dimer formation dominates the dark-field scattering and SERS. Furthermore, it is shown that small numbers of nanoparticles can be isolated in microdroplets, paving the way for simple high-yield assembly, isolation, and sorting of few nanoparticle structures.


Assuntos
Nanopartículas Metálicas/química , Microfluídica/métodos , Fenômenos Ópticos , Análise Espectral Raman/métodos , Ouro/química , Refratometria
14.
Langmuir ; 32(42): 10987-10994, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27700114

RESUMO

There is an emerging trend toward the fabrication of microcapsules at liquid interfaces. In order to control the parameters of such capsules, the interfacial processes governing their formation must be understood. Here, poly(vinyl alcohol) films are assembled at the interface of water-in-oil microfluidic droplets. The polymer is cross-linked using cucurbit[8]uril ternary supramolecular complexes. It is shown that compression-induced phase change causes the onset of buckling in the interfacial film. On evaporative compression, the interfacial film both increases in density and thickens, until it reaches a critical density and a phase change occurs. We show that this increase in density can be simply related to the film Poisson ratio and area compression. This description captures fundamentals of many compressive interfacial phase changes and can also explain the observation of a fixed thickness-to-radius ratio at buckling, [Formula: see text].

15.
J Am Soc Nephrol ; 26(8): 1889-904, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25542969

RESUMO

Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy. Renal expression of VEGF-A165b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A165b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A165b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A165b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A165b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A165b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Albuminúria/tratamento farmacológico , Animais , Nefropatias Diabéticas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos , Glicocálix/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Podócitos/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Adv Funct Mater ; 25(26): 4091-4100, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26213532

RESUMO

Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules-where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core-shell microcapsules, gives access to a new generation of innovative self-assembled constructs.

17.
FASEB J ; 28(11): 4686-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122554

RESUMO

The endothelial surface glycocalyx is a hydrated mesh in which proteoglycans are prominent. It is damaged in diseases associated with elevated levels of tumor necrosis factor α (TNF-α). We investigated the mechanism of TNF-α-induced disruption of the glomerular endothelial glycocalyx. We used conditionally immortalized human glomerular endothelial cells (GEnCs), quantitative PCR arrays, Western blotting, immunoprecipitation, immunofluorescence, and dot blots to examine the effects of TNF-α. TNF-α induced syndecan 4 (SDC4) mRNA up-regulation by 2.5-fold, whereas cell surface SDC4 and heparan sulfate (HS) were reduced by 36 and 30%, respectively, and SDC4 and sulfated glycosaminoglycan in the culture medium were increased by 52 and 65%, respectively, indicating TNF-α-induced shedding. Small interfering (siRNA) knockdown of SDC4 (by 52%) caused a corresponding loss of cell surface HS of similar magnitude (38%), and immunoprecipitation demonstrated that SDC4 and HS are shed as intact proteoglycan ectodomains. All of the effects of TNF-α on SDC4 and HS were abrogated by the metalloproteinase (MMP) inhibitor batimastat. Also abrogated was the associated 37% increase in albumin passage across GEnC monolayers. Specific MMP9 knockdown by siRNA similarly blocked TNF-α effects. SDC4 is the predominant HS proteoglycan in the GEnC glycocalyx. TNF-α-induced MMP9-mediated shedding of SDC4 is likely to contribute to the endothelial glycocalyx disruption observed in diabetes and inflammatory states.


Assuntos
Glicocálix/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Sindecana-4/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Membrana Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Metaloproteinase 9 da Matriz/genética , Proteoglicanas/metabolismo
18.
Br J Clin Pharmacol ; 80(3): 389-402, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25778676

RESUMO

The endothelial glycocalyx has a profound influence at the vascular wall on the transmission of shear stress, on the maintenance of a selective permeability barrier and a low hydraulic conductivity, and on attenuating firm adhesion of blood leukocytes and platelets. Major constituents of the glycocalyx, including syndecans, heparan sulphates and hyaluronan, are shed from the endothelial surface under various acute and chronic clinical conditions, the best characterized being ischaemia and hypoxia, sepsis and inflammation, atherosclerosis, diabetes, renal disease and haemorrhagic viral infections. Damage has also been detected by in vivo microscopic techniques. Matrix metalloproteases may shed syndecans and heparanase, released from activated mast cells, cleaves heparan sulphates from core proteins. According to new data, not only hyaluronidase but also the serine proteases thrombin, elastase, proteinase 3 and plasminogen, as well as cathepsin B lead to loss of hyaluronan from the endothelial surface layer, suggesting a wide array of potentially destructive conditions. Appropriately, pharmacological agents such as inhibitors of inflammation, antithrombin and inhibitors of metalloproteases display potential to attenuate shedding of the glycocalyx in various experimental models. Also, plasma components, especially albumin, stabilize the glycocalyx and contribute to the endothelial surface layer. Though symptoms of the above listed diseases and conditions correlate with sequelae expected from disturbance of the endothelial glycocalyx (oedema, inflammation, leukocyte and platelet adhesion, low reflow), therapeutic studies to prove a causal connection have yet to be designed. With respect to studies on humans, some clinical evidence exists for benefits from application of sulodexide, a preparation delivering precursors of the glycocalyx constituent heparan sulphate. At present, the simplest option for protecting the glycocalyx seems to be to ensure an adequate level of albumin. However, also in this case, definite proof of causality needs to be delivered.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Endotélio Vascular/ultraestrutura , Glicocálix/ultraestrutura , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Endotélio Vascular/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glicocálix/metabolismo , Glicosaminoglicanos/farmacologia , Glicosaminoglicanos/uso terapêutico , Heparitina Sulfato/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Peptídeo Hidrolases/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Insuficiência Renal/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Sepse/metabolismo , Sepse/patologia , Sepse/prevenção & controle , Albumina Sérica/metabolismo , Sindecanas/metabolismo
19.
BMJ Open Qual ; 13(1)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302467

RESUMO

BACKGROUND: The use of quality improvement methodology has increased in recent years due to a perceived benefit in effectively reducing morbidity, mortality and length of stay. Statistical process control (SPC) is an important tool to evaluate these actions, but its use has been limited in abdominal surgery. Previous systematic reviews have examined the use of SPC in healthcare, but relatively few surgery-related articles were found at that time. OBJECTIVE: To perform a systematic review (SR) to evaluate the application of SPC on abdominal surgery specialties between 2004 and 2019. METHODS: An SR following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram was completed using Embase and Ovid Medline with terms related to abdominal surgery and SPC. RESULTS: A total of 20 articles were selected after applying the exclusion criteria. Most of the articles came from North America, Europe and Australia, and half have been published in the last 5 years. The most common outcome studied was surgical complications. Urology, colorectal and paediatric surgery made up most of the articles. Articles show the application of SPC in various outcomes and the use of different types of graphs, demonstrating flexibility in using SPC. However, some studies did not use SPC in a robust way and these studies were of variable quality. CONCLUSION: This study shows that SPCs are being applied increasingly for most surgical specialties; however, it is still less used than in other fields, such as anaesthesia. We identified conceptual errors in several studies, such as issues with the design or incorrect data analysis. SPCs can be used to increase the quality of surgical care; the use should increase, but critically, the analysis needs to improve to prevent erroneous conclusions being drawn.


Assuntos
Atenção à Saúde , Procedimentos Cirúrgicos do Sistema Digestório , Melhoria de Qualidade , Humanos , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA