Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell Biol ; 15(7): 3487-95, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7791755

RESUMO

The CCR4 protein from Saccharomyces cerevisiae is a component of a multisubunit complex that is required for the regulation of a number of genes in yeast cells. We report here the identification of a mouse protein (mCAF1 [mouse CCR4-associated factor 1]) which is capable of interacting with and binding to the yeast CCR4 protein. The mCAF1 protein was shown to have significant similarity to proteins from humans, Caenorhabditis elegans, Arabidopsis thaliana, and S. cerevisiae. The yeast gene (yCAF1) had been previously cloned as the POP2 gene, which is required for expression of several genes. Both yCAF1 (POP2) and the C. elegans homolog of CAF1 were shown to genetically interact with CCR4 in vivo, and yCAF1 (POP2) physically associated with CCR4. Disruption of the CAF1 (POP2) gene in yeast cells gave phenotypes and defects in transcription similar to those observed with disruptions of CCR4, including the ability to suppress spt10-enhanced ADH2 expression. In addition, yCAF1 (POP2) when fused to LexA was capable of activating transcription. mCAF1 could also activate transcription when fused to LexA and could functionally substitute for yCAF1 in allowing ADH2 expression in an spt10 mutant background. These data imply that CAF1 is a component of the CCR4 protein complex and that this complex has retained evolutionarily conserved functions important to eukaryotic transcription.


Assuntos
Proteínas de Arabidopsis , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Proteínas , Ribonucleases , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidases , Transaminases , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Eucarióticas/fisiologia , Exorribonucleases , Proteínas Fúngicas/genética , Leucina/genética , Camundongos , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Ácido Nucleico , Proteínas Repressoras , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Relação Estrutura-Atividade
2.
Mol Cell Biol ; 19(10): 6642-51, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10490603

RESUMO

The CCR4-NOT complex (1 mDa in size), consisting of the proteins CCR4, CAF1, and NOT1 to NOT5, regulates gene expression both positively and negatively and is distinct from other large transcriptional complexes in Saccharomyces cerevisiae such as SNF/SWI, TFIID, SAGA, and RNA polymerase II holoenzyme. The physical and genetic interactions between the components of the CCR4-NOT complex were investigated in order to gain insight into how this complex affects the expression of diverse genes and processes. The CAF1 protein was found to be absolutely required for CCR4 association with the NOT proteins, and CCR4 and CAF1, in turn, physically interacted with NOT1 through its central amino acid region from positions 667 to 1152. The NOT3, NOT4, and NOT5 proteins had no significant effect on the association of CCR4, CAF1, and NOT1 with each other. In contrast, the NOT2, NOT4, and NOT5 interacted with the C-terminal region (residues 1490 to 2108) of NOT1 in which NOT2 and NOT5 physically associated in the absence of CAF1, NOT3, and NOT4. These and other data indicate that the physical ordering of these proteins in the complex is CCR4-CAF1-NOT1-(NOT2, NOT5), with NOT4 and NOT3 more peripheral to NOT2 and NOT5. The physical separation of CCR4 and CAF1 from other components of the CCR4-NOT complex correlated with genetic analysis indicating partially separate functions for these two groups of proteins. ccr4 or caf1 deletion suppressed the increased 3-aminotriazole resistance phenotype conferred by not mutations, resulted in opposite effects on gene expression as compared to several not mutations, and resulted in a number of synthetic phenotypes in combination with not mutations. These results define the CCR4-NOT complex as consisting of at least two physically and functionally separated groups of proteins.


Assuntos
Ribonucleases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Fenótipo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
3.
Mol Gen Genet ; 232(3): 479-88, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1588917

RESUMO

Three alcohol dehydrogenase (ADH) genes have recently been characterized in the yeast Kluyveromyces lactis. We report on a fourth ADH in K. lactis (KADH II: KADH2* gene) which is highly similar to other ADHs in K. lactis and Saccharomyces cerevisiae. KADH II appears to be a cytoplasmic enzyme, and after expression of KADH2 in S. cerevisiae enzyme activity comigrated with a K. lactis ADH present in cells grown in glucose or in ethanol. KADH I was also expressed in S. cerevisiae and it comigrated with a major ADH species expressed under glucose growth conditions in K. lactis. The substrate specificities for KADH I and KADH II were shown to be more similar to that of SADH II than to SADH I. SADH I cannot efficiently utilize long chain alcohols, in contrast to other cytoplasmic yeast ADHs, presumably because of the presence of a methionine (residue 271) in its substrate binding cleft. A comparison of the DNA sequences of ADHs among K. lactis, S. cerevisiae and Schizosaccharomyces pombe suggests that the ancestral yeast species contained one cytoplasmic ADH. After divergence from S. pombe, the ADH in the ancestor to K. lactis and S. cerevisiae was duplicated, and one ADH became localized to the mitochondrion, presumably for the oxidative use of ethanol. Following the speciation of S. cerevisiae and K. lactis, the gene encoding the cytoplasmic ADH in S. cerevisiae duplicated, which resulted in the development of the SADH II protein as the primary oxidative enzyme in place of SADH III. In contrast, the K. lactis mitochondrial ADH duplicated to give rise to the highly expressed KADH3 and KADH4 genes, both of which may still play primary roles in oxidative metabolism. These data suggest that K. lactis and S. cerevisiae use different compartments for their metabolism of ethanol. Our results also indicate that the complex regulatory circuits controlling the glucose-repressible SADH2 in S. cerevisiae are a recent acquisition from regulatory networks used for the control of genes other than SADH2.


Assuntos
Álcool Desidrogenase/genética , Evolução Biológica , Isoenzimas/genética , Kluyveromyces/genética , Saccharomyces cerevisiae/genética , Álcool Desidrogenase/isolamento & purificação , Álcool Desidrogenase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular/métodos , DNA Bacteriano/genética , Cinética , Kluyveromyces/enzimologia , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Família Multigênica , Plasmídeos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato
4.
J Biol Chem ; 276(10): 7541-8, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11113136

RESUMO

The CCR4-NOT transcriptional regulatory complex affects transcription both positively and negatively and consists of the following two complexes: a core 1 x 10(6) dalton (1 MDa) complex consisting of CCR4, CAF1, and the five NOT proteins and a larger, less defined 1.9-MDa complex. We report here the identification of two new factors that associate with the CCR4-NOT proteins as follows: CAF4, a WD40-containing protein, and CAF16, a putative ABC ATPase. Whereas neither CAF4 nor CAF16 was part of the core CCR4-NOT complex, both CAF16 and CAF4 appeared to be present in the 1.9-MDa complex. CAF4 also displayed physical interactions with multiple CCR4-NOT components and with DBF2, a likely component of the 1.9-MDa complex. In addition, both CAF4 and CAF16 were found to interact in a CCR4-dependent manner with SRB9, a component of the SRB complex that is part of the yeast RNA polymerase II holoenzyme. The three related SRB proteins, SRB9, SRB10, and SRB11, were found to interact with and to coimmunoprecipitate DBF2, CAF4, CCR4, NOT2, and NOT1. Defects in SRB9 and SRB10 also affected processes at the ADH2 locus known to be controlled by components of the CCR4-NOT complex; an srb9 mutation was shown to reduce ADH2 derepression and either an srb9 or srb10 allele suppressed spt10-enhanced expression of ADH2. In addition, srb9 and srb10 alleles increased ADR1(c)-dependent ADH2 expression; not4 and not5 deletions are the only other known defects that elicit this phenotype. These results suggest a close physical and functional association between components of the CCR4-NOT complexes and the SRB9, -10, and -11 components of the holoenzyme.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/química , Proteínas Fúngicas/química , RNA Polimerase II/química , Ribonucleases , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/química , Adenosina Trifosfatases/genética , Alelos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Cromatografia em Gel , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Genótipo , Complexo Mediador , Mutação , Fenótipo , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Supressão Genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA