Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant J ; 119(1): 413-431, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625788

RESUMO

The protein-repairing enzyme (PRE) PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) influences seed vigor by repairing isoaspartyl-mediated protein damage in seeds. However, PIMTs function in other seed traits, and the mechanisms by which PIMT affects such seed traits are still poorly understood. Herein, through molecular, biochemical, and genetic studies using overexpression and RNAi lines in Oryza sativa and Arabidopsis thaliana, we demonstrate that PIMT not only affects seed vigor but also affects seed size and weight by modulating enolase (ENO) activity. We have identified ENO2, a glycolytic enzyme, as a PIMT interacting protein through Y2H cDNA library screening, and this interaction was further validated by BiFC and co-immunoprecipitation assay. We show that mutation or suppression of ENO2 expression results in reduced seed vigor, seed size, and weight. We also proved that ENO2 undergoes isoAsp modification that affects its activity in both in vivo and in vitro conditions. Further, using MS/MS analyses, amino acid residues that undergo isoAsp modification in ENO2 were identified. We also demonstrate that PIMT repairs such isoAsp modification in ENO2 protein, protecting its vital cellular functions during seed maturation and storage, and plays a vital role in regulating seed size, weight, and seed vigor. Taken together, our study identified ENO2 as a novel substrate of PIMT, and both ENO2 and PIMT in turn implicate in agronomically important seed traits.


Assuntos
Arabidopsis , Oryza , Fosfopiruvato Hidratase , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Sementes , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Sementes/genética , Sementes/fisiologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Oryza/genética , Oryza/enzimologia , Oryza/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas
2.
Funct Integr Genomics ; 23(4): 336, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968542

RESUMO

Iron (Fe) is an important micronutrient for humans as well as for plant growth and development. Rice employs multiple mechanisms to counteract the negative effects of Fe deficiency and Fe toxicity. Previously, many transcriptomics studies have identified hundreds of genes affected by Fe deficiency and/or Fe toxicity. These studies are highly valuable to identify novel genes involved in Fe homeostasis. However, in the absence of their systematic integration, they remain underutilized. A systematic meta-analysis of transcriptomics data from such ten previous studies was performed here to identify various common attributes. From this meta-analysis, it is revealed that under Fe deficiency conditions, root transcriptome is more sensitive and exhibits greater similarity across multiple studies than the shoot transcriptome. Furthermore, under Fe toxicity conditions, upregulated genes are more reliable and consistent than downregulated genes in susceptible cultivars. The integration of data from Fe deficiency and Fe toxicity conditions helped to identify key marker genes for Fe stress. As a proof-of-concept of the analysis, among the genes consistently regulated in opposite directions under Fe deficiency and toxicity conditions, two genes were selected: a proton-dependent oligopeptide transporter (POT) family protein and Vacuolar Iron Transporter (VIT)-Like (VTL) gene, and validated their expression and sub-cellular localization. Since VIT genes are known to play an important role in Fe homeostasis in plants, the entire OsVTL gene family in rice was characterized. This meta-analysis has identified many novel candidate genes that exhibit consistent expression patterns across multiple tissues, conditions, and studies. This makes them potential targets for future research aimed at developing Fe-biofortified rice varieties, as well as varieties tolerant to sub-optimal Fe levels in soil.


Assuntos
Deficiências de Ferro , Oryza , Humanos , Oryza/metabolismo , Ferro/metabolismo , Perfilação da Expressão Gênica , Homeostase/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética
3.
Physiol Plant ; 174(2): e13652, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35174495

RESUMO

Sugars as photosynthates are well known as energy providers and as building blocks of various structural components of plant cells, tissues and organs. Additionally, as a part of various sugar signaling pathways, they interact with other cellular machinery and influence many important cellular decisions in plants. Sugar signaling is further reliant on the differential distribution of sugars throughout the plant system. The distribution of sugars from source to sink tissues or within organelles of plant cells is a highly regulated process facilitated by various sugar transporters located in plasma membranes and organelle membranes, respectively. Sugar distribution, as well as signaling, is impacted during unfavorable environments such as extreme temperatures, salt, nutrient scarcity, or drought. Here, we have discussed the mechanism of sugar transport via various types of sugar transporters as well as their differential response during environmental stress exposure. The functional involvement of sugar transporters in plant's abiotic stress tolerance is also discussed. Besides, we have also highlighted the challenges in engineering sugar transporter proteins as well as the undeciphered modules associated with sugar transporters in plants. Thus, this review provides a comprehensive discussion on the role and regulation of sugar transporters during abiotic stresses and enables us to target the candidate sugar transporter(s) for crop improvement to develop climate-resilient crops.


Assuntos
Secas , Estresse Fisiológico , Transporte Biológico , Produtos Agrícolas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo
4.
Biochem J ; 478(21): 3939-3955, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693969

RESUMO

Galactinol synthase (GolS) catalyzes the key regulatory step in the biosynthesis of Raffinose Family Oligosaccharides (RFOs). Even though the physiological role and regulation of this enzyme has been well studied, little is known about active site amino acids and the structure-function relationship with substrates of this enzyme. In the present study, we investigate the active site amino acid and structure-function relationship for this enzyme. Using a combination of three-dimensional homology modeling, molecular docking along with a series of deletion, site-directed mutagenesis followed by in vitro biochemical and in vivo functional analysis; we have studied active site amino acids and their interaction with the substrate of chickpea and Arabidopsis GolS enzyme. Our study reveals that the GolS protein possesses GT8 family-specific several conserved motifs in which NAG motif plays a crucial role in substrate binding and catalytic activity of this enzyme. Deletion of entire NAG motif or deletion or the substitution (with alanine) of any residues of this motif results in complete loss of catalytic activity in in vitro condition. Furthermore, disruption of NAG motif of CaGolS1 enzyme disrupts it's in vivo cellular function in yeast as well as in planta. Together, our study offers a new insight into the active site amino acids and their substrate interaction for the catalytic activity of GolS enzyme. We demonstrate that NAG motif plays a vital role in substrate binding for the catalytic activity of galactinol synthase that affects overall RFO synthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/metabolismo , Galactosiltransferases , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Conformação Proteica , Domínios Proteicos
5.
J Biol Chem ; 295(3): 783-799, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31831624

RESUMO

Stressful environments accelerate the formation of isoaspartyl (isoAsp) residues in proteins, which detrimentally affect protein structure and function. The enzyme PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) repairs other proteins by reverting deleterious isoAsp residues to functional aspartyl residues. PIMT function previously has been elucidated in seeds, but its role in plant survival under stress conditions remains undefined. Herein, we used molecular, biochemical, and genetic approaches, including protein overexpression and knockdown experiments, in Arabidopsis to investigate the role of PIMTs in plant growth and survival during heat and oxidative stresses. We demonstrate that these stresses increase isoAsp accumulation in plant proteins, that PIMT activity is essential for restricting isoAsp accumulation, and that both PIMT1 and PIMT2 play an important role in this restriction and Arabidopsis growth and survival. Moreover, we show that PIMT improves stress tolerance by facilitating efficient reactive oxygen species (ROS) scavenging by protecting the functionality of antioxidant enzymes from isoAsp-mediated damage during stress. Specifically, biochemical and MS/MS analyses revealed that antioxidant enzymes acquire deleterious isoAsp residues during stress, which adversely affect their catalytic activities, and that PIMT repairs the isoAsp residues and thereby restores antioxidant enzyme function. Collectively, our results suggest that the PIMT-mediated protein repair system is an integral part of the stress-tolerance mechanism in plants, in which PIMTs protect antioxidant enzymes that maintain proper ROS homeostasis against isoAsp-mediated damage in stressful environments.


Assuntos
Antioxidantes/química , Arabidopsis/química , Estresse Oxidativo/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Sequência de Aminoácidos/genética , Antioxidantes/metabolismo , Arabidopsis/enzimologia , Temperatura Alta , Ácido Isoaspártico/química , Ácido Isoaspártico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteômica , Espécies Reativas de Oxigênio/química , Sementes/química , Sementes/genética , Estresse Fisiológico/genética , Espectrometria de Massas em Tandem
6.
Funct Integr Genomics ; 21(5-6): 593-603, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34436705

RESUMO

Proteins regulate cellular and biological processes in all living organisms. More than 80% of the proteins interact with one another to perform their respective functions; therefore, studying the protein-protein-interaction has gained attention in functional characterization studies. Bimolecular fluorescence complement (BiFC) assay is widely adopted to determine the physical interaction of two proteins in vivo. Here, we developed a simple, yet effective BiFC assay for protein-protein-interaction using transient Agrobacterium-mediated-transformation of onion epidermal cells by taking case study of Rice-P-box-Binding-Factor (RPBF) and rice-seed-specific-bZIP (RISBZ) in vivo interaction. Our result revealed that both the proteins, i.e., RISBZ and RPBF, interacted in the nucleus and cytosol. These two transcription factors are known for their coordinate/synergistic regulation of seed-protein content via concurrent binding to the promoter region of the seed storage protein (SSP) encoding genes. We further validated our results with BiFC assay in Nicotiana by agroinfiltration method, which exhibited similar results as Agrobacterium-mediated-transformation of onion epidermal cells. We also examined the subcellular localization of RISBZ and RPBF to assess the efficacy of the protocol. The subcellular localization and BiFC assay presented here is quite easy-to-follow, reliable, and reproducible, which can be completed within 2-3 days without using costly instruments and technologies that demand a high skill set.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas/economia , Mapeamento de Interação de Proteínas/métodos , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fluorescência , Oryza/genética , Proteínas de Armazenamento de Sementes/genética , Fatores de Tempo , Nicotiana/genética , Nicotiana/metabolismo
7.
Physiol Plant ; 171(4): 833-848, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33583052

RESUMO

Cellular sugar status is essentially maintained during normal growth conditions but is impacted negatively during various environmental perturbations. Drought presents one such unfavorable environmental cue that hampers the photosynthetic fixation of carbon into sugars and affects their transport by lowering the cellular osmotic potential. The transport of cellular sugar is facilitated by a specific set of proteins known as sugar transporters. These transporter proteins are the key determinant of influx/ efflux of various sugars and their metabolite intermediates that support the plant growth and developmental process. Abiotic stress and especially drought stress-mediated injury results in reprogramming of sugar distribution across the cellular and subcellular compartments. Here, we have reviewed the imperative role of sugar accumulation, signaling, and transport under typical and atypical stressful environments. We have discussed the physiological effects of drought on sugar accumulation and transport through different transporter proteins involved in monosaccharide and disaccharide sugar transport. Further, we have illustrated sugar-mediated signaling and regulation of sugar transporter proteins along with the overall crosstalk of this signaling with the phytohormone module of abiotic stress response under osmotic stress. Overall, the present review highlights the critical role of sugar transport, distribution and signaling in plants under drought stress conditions.


Assuntos
Secas , Açúcares , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Plantas , Estresse Fisiológico
8.
Physiol Plant ; 172(2): 847-868, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33180329

RESUMO

Amid apprehension of global climate change, crop plants are inevitably confronted with a myriad of abiotic stress factors during their growth that inflicts a serious threat to their development and overall productivity. These abiotic stresses comprise extreme temperature, pH, high saline soil, and drought stress. Among different abiotic stresses, drought is considered the most calamitous stressor with its serious impact on the crops' yield stability. The development of climate-resilient crops that withstands reduced water availability is a major focus of the scientific fraternity to ensure the food security of the sharply increasing population. Numerous studies aim to recognize the key regulators of molecular and biochemical processes associated with drought stress tolerance response. A few potential candidates are now considered as promising targets for crop improvement. Transcription factors act as a key regulatory switch controlling the gene expression of diverse biological processes and, eventually, the metabolic processes. Understanding the role and regulation of the transcription factors will facilitate the crop improvement strategies intending to develop and deliver agronomically-superior crops. Therefore, in this review, we have emphasized the molecular avenues of the transcription factors that can be exploited to engineer drought tolerance potential in crop plants. We have discussed the molecular role of several transcription factors, such as basic leucine zipper (bZIP), dehydration responsive element binding (DREB), DNA binding with one finger (DOF), heat shock factor (HSF), MYB, NAC, TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP), and WRKY. We have also highlighted candidate transcription factors that can be used for the development of drought-tolerant crops.


Assuntos
Produtos Agrícolas/fisiologia , Secas , Estresse Fisiológico , Fatores de Transcrição , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Cell Rep ; 40(8): 1305-1329, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33751168

RESUMO

Phytohormones are ubiquitously involved in plant biological processes and regulate cellular signaling pertaining to unheralded environmental cues, such as salinity, drought, extreme temperature and nutrient deprivation. The association of phytohormones to nearly all the fundamental biological processes epitomizes the phytohormone syndicate as a candidate target for consideration during engineering stress endurance in agronomically important crops. The drought stress response is essentially driven by phytohormones and their intricate network of crosstalk, which leads to transcriptional reprogramming. This review is focused on the pivotal role of phytohormones in water deficit responses, including their manipulation for mitigating the effect of the stressor. We have also discussed the inherent complexity of existing crosstalk accrued among them during the progression of drought stress, which instigates the tolerance response. Therefore, in this review, we have highlighted the role and regulatory aspects of various phytohormones, namely abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, jasmonic acid, salicylic acid, ethylene and strigolactone, with emphasis on drought stress tolerance.


Assuntos
Secas , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Citocininas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Estresse Fisiológico
10.
Plant Cell Physiol ; 59(1): 155-166, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29121266

RESUMO

Raffinose family oligosaccharides (RFOs) participate in various aspects of plant physiology, and galactinol synthase (GolS; EC 2.4.1.123) catalyzes the key step of RFO biosynthesis. Stress-induced accumulation of RFOs, in particular galactinol and raffinose, has been reported in a few plants; however, their precise role and mechanistic insight in stress adaptation remain elusive. In the present study, we have shown that the GolS activity as well as galactinol and raffinose content are significantly increased in response to various abiotic stresses in chickpea. Transcriptional analysis indicated that the CaGolS1 and CaGolS2 genes are induced in response to different abiotic stresses. Interestingly, heat and oxidative stress preferentially induce CaGolS1 over CaGolS2. In silco analysis revealed several common yet distinct cis-acting regulatory elements in their 5'-upstream regulatory sequences. Further, in vitro biochemical analysis revealed that the CaGolS1 enzyme functions better in stressful conditions than the CaGolS2 enzyme. Finally, Arabidopsis transgenic plants constitutively overexpressing CaGolS1 or CaGolS2 exhibit not only significantly increased galactinol but also raffinose content, and display better growth responses than wild-type or vector control plants when exposed to heat and oxidative stress. Further, improved tolerance of transgenic lines is associated with reduced accumulation of reactive oxygen species (ROS) and consequent lipid peroxidation as compared with control plants. Collectively, our data imply that GolS enzyme activity and consequent galactinol and raffinose content are significantly increased in response to stresses to mitigate stress-induced growth inhibition by restricting excessive ROS accumulation and consequent lipid peroxidation in plants.


Assuntos
Cicer/genética , Galactosiltransferases/genética , Temperatura Alta , Estresse Oxidativo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Cicer/metabolismo , Dissacarídeos/metabolismo , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rafinose/metabolismo
11.
J Exp Bot ; 69(16): 3899-3915, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29788274

RESUMO

SKP1 (S-phase kinase-associated protein1) proteins are key members of the SCF (SKP-cullin-F-box protein) E3 ligase complexes that ubiquitinate target proteins and play diverse roles in plant biology. However, in comparison with other members of the SCF complex, knowledge of SKP1-like proteins is very limited in plants. In the present work, we report that Arabidopsis SKP1-like protein13 (ASK13) is differentially regulated in different organs during seed development and germination and is up-regulated in response to abiotic stress. Yeast two-hybrid library screening and subsequent assessment of in vivo interactions through bimolecular fluorescence complementation analysis revealed that ASK13 not only interacts with F-box proteins but also with other proteins that are not components of SCF complexes. Biochemical analysis demonstrated that ASK13 not only exists as a monomer but also as a homo-oligomer or heteromer with other ASK proteins. Functional analysis using ASK13 overexpression and knockdown lines showed that ASK13 positively influences seed germination and seedling growth, particularly under abiotic stress. Taken together, our data strongly suggest that apart from participation to form SCF complexes, ASK13 interacts with several other proteins and is implicated in different cellular processes distinct from protein degradation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Germinação/fisiologia , Plântula/crescimento & desenvolvimento , Sementes/fisiologia , Estresse Fisiológico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido , Regulação para Cima
12.
New Phytol ; 211(2): 627-45, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26987457

RESUMO

PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) is a protein-repairing enzyme involved in seed vigor and longevity. However, the regulation of PIMT isoforms during seed development and the mechanism of PIMT-mediated improvement of seed vigor and longevity are largely unknown. In this study in rice (Oryza sativa), we demonstrate the dynamics and correlation of isoaspartyl (isoAsp)-repairing demands and PIMT activity, and their implications, during seed development, germination and aging, through biochemical, molecular and genetic studies. Molecular and biochemical analyses revealed that rice possesses various biochemically active and inactive PIMT isoforms. Transcript and western blot analyses clearly showed the seed development stage and tissue-specific accumulation of active isoforms. Immunolocalization studies revealed distinct isoform expression in embryo and aleurone layers. Further analyses of transgenic lines for each OsPIMT isoform revealed a clear role in the restriction of deleterious isoAsp and age-induced reactive oxygen species (ROS) accumulation to improve seed vigor and longevity. Collectively, our data suggest that a PIMT-mediated, protein repair mechanism is initiated during seed development in rice, with each isoform playing a distinct, yet coordinated, role. Our results also raise the intriguing possibility that PIMT repairs antioxidative enzymes and proteins which restrict ROS accumulation, lipid peroxidation, etc. in seed, particularly during aging, thus contributing to seed vigor and longevity.


Assuntos
Ácido Aspártico/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Vigor Híbrido , Isoenzimas/metabolismo , Longevidade , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Plant Sci ; 338: 111903, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865210

RESUMO

The global population is growing rapidly, and with it, the demand for food. In the coming decades, more and more people will be living in urban areas, where land for traditional agriculture is scarce. Urban agriculture can help to meet this growing demand for food in a sustainable way. Urban agriculture is the practice of growing food in urban areas. It can be done on rooftops, balconies, vacant lots, and even in alleyways. Urban agriculture can produce a variety of crops, including fruits, vegetables, and herbs. It can also help to improve air quality, reduce stormwater runoff, and create jobs. Biotechnology can be used to improve the efficiency and sustainability of urban agriculture. Biotechnological tools can be used to develop crops that are resistant to pests and diseases, that are more tolerant of drought and heat, and that have higher yields. Biotechnology can also be used to improve the nutritional value of crops. This review article discusses the need for and importance of urban agriculture, biotechnology, and genome editing in meeting the growing demand for food in urban areas. It also discusses the potential of biotechnology to improve the sustainability of urban agriculture.


Assuntos
Biotecnologia , Verduras , Humanos , Produtos Agrícolas/genética , Valor Nutritivo , Agricultura
14.
J Exp Bot ; 64(18): 5623-39, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123252

RESUMO

myo-Inositol monophosphatase (IMP) is an essential enzyme in the myo-inositol metabolic pathway where it primarily dephosphorylates myo-inositol 1-phosphate to maintain the cellular inositol pool which is important for many metabolic and signalling pathways in plants. The stress-induced increased accumulation of inositol has been reported in a few plants including chickpea; however, the role and regulation of IMP is not well defined in response to stress. In this work, it has been shown that IMP activity is distributed in all organs in chickpea and was noticeably enhanced during environmental stresses. Subsequently, using degenerate oligonucleotides and RACE strategy, a full-length IMP cDNA (CaIMP) was cloned and sequenced. Biochemical study revealed that CaIMP encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity, although maximum activity was observed with the myo-inositol 1-phosphate and l-galactose 1-phosphate substrates. Transcript analysis revealed that CaIMP is differentially expressed and regulated in different organs, stresses and phytohormones. Complementation analysis in Arabidopsis further confirmed the role of CaIMP in l-galactose 1-phosphate and myo-inositol 1-phosphate hydrolysis and its participation in myo-inositol and ascorbate biosynthesis. Moreover, Arabidopsis transgenic plants over-expressing CaIMP exhibited improved tolerance to stress during seed germination and seedling growth, while the VTC4/IMP loss-of-function mutants exhibited sensitivity to stress. Collectively, CaIMP links various metabolic pathways and plays an important role in improving seed germination and seedling growth, particularly under stressful environments.


Assuntos
Cicer/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Plântula/crescimento & desenvolvimento , Arabidopsis/genética , Ácido Ascórbico/metabolismo , Cicer/enzimologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Germinação/genética , Peróxido de Hidrogênio/metabolismo , Fosfatos de Inositol/metabolismo , Lítio/farmacologia , Malondialdeído/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Especificidade por Substrato
15.
Sci Total Environ ; 864: 160972, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566865

RESUMO

Arsenic contamination in aquatic and terrestrial ecosystem is a serious environmental issue. Both natural and anthropogenic processes can introduce it into the environment. The speciation of the As determine the level of its toxicity. Among the four oxidation states of As (-3, 0, +3, and + 5), As(III) and As(V) are the common species found in the environment, As(III) being the more toxic with adverse impact on the plants and animals including human health. Therefore, it is very necessary to remediate arsenic from the polluted water and soil. Different physicochemical as well as biological strategies can be used for the amelioration of arsenic polluted soil. Among the microbial approaches, oxidation of arsenite, methylation of arsenic, biosorption, bioprecipitation and bioaccumulation are the promising transformation activities in arsenic remediation. The purpose of this review is to discuss the significance of the microorganisms in As toxicity amelioration in soil, factors affecting the microbial remediation, interaction of the plants with As resistant bacteria, and the effect of microorganisms on plant arsenic tolerance mechanism. In addition, the exploration of genetic engineering of the bacteria has a huge importance in bioremediation strategies, as the engineered microbes are more potent in terms of remediation activity along with quick adaptively in As polluted sites.


Assuntos
Arsênio , Poluentes do Solo , Humanos , Arsênio/análise , Ecossistema , Bactérias/genética , Biodegradação Ambiental , Plantas , Solo , Poluentes do Solo/toxicidade
16.
Bioengineering (Basel) ; 10(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508788

RESUMO

Nano-oncology is a branch of biomedical research and engineering that focuses on using nanotechnology in cancer diagnosis and treatment. Nanomaterials are extensively employed in the field of oncology because of their minute size and ultra-specificity. A wide range of nanocarriers, such as dendrimers, micelles, PEGylated liposomes, and polymeric nanoparticles are used to facilitate the efficient transport of anti-cancer drugs at the target tumor site. Real-time labeling and monitoring of cancer cells using quantum dots is essential for determining the level of therapy needed for treatment. The drug is targeted to the tumor site either by passive or active means. Passive targeting makes use of the tumor microenvironment and enhanced permeability and retention effect, while active targeting involves the use of ligand-coated nanoparticles. Nanotechnology is being used to diagnose the early stage of cancer by detecting cancer-specific biomarkers using tumor imaging. The implication of nanotechnology in cancer therapy employs photoinduced nanosensitizers, reverse multidrug resistance, and enabling efficient delivery of CRISPR/Cas9 and RNA molecules for therapeutic applications. However, despite recent advancements in nano-oncology, there is a need to delve deeper into the domain of designing and applying nanoparticles for improved cancer diagnostics.

17.
ACS Appl Bio Mater ; 6(9): 3577-3599, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590090

RESUMO

Nanozymes are nanoparticles with intrinsic enzyme-mimicking properties that have become more prevalent because of their ability to outperform conventional enzymes by overcoming their drawbacks related to stability, cost, and storage. Nanozymes have the potential to manipulate active sites of natural enzymes, which is why they are considered promising candidates to function as enzyme mimetics. Several microscopy- and spectroscopy-based techniques have been used for the characterization of nanozymes. To date, a wide range of nanozymes, including catalase, oxidase, peroxidase, and superoxide dismutase, have been designed to effectively mimic natural enzymes. The activity of nanozymes can be controlled by regulating the structural and morphological aspects of the nanozymes. Nanozymes have multifaceted benefits, which is why they are exploited on a large scale for their application in the biomedical sector. The versatility of nanozymes aids in monitoring and treating cancer, other neurodegenerative diseases, and metabolic disorders. Due to the compelling advantages of nanozymes, significant research advancements have been made in this area. Although a wide range of nanozymes act as potent mimetics of natural enzymes, their activity and specificities are suboptimal, and there is still room for their diversification for analytical purposes. Designing diverse nanozyme systems that are sensitive to one or more substrates through specialized techniques has been the subject of an in-depth study. Hence, we believe that stimuli-responsive nanozymes may open avenues for diagnosis and treatment by fusing the catalytic activity and intrinsic nanomaterial properties of nanozyme systems.


Assuntos
Nanopartículas , Nanoestruturas , Nanoestruturas/uso terapêutico , Peroxidase , Peroxidases , Microscopia
18.
Front Plant Sci ; 13: 956299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968137

RESUMO

Intrinsically disorder regions or proteins (IDRs or IDPs) constitute a large subset of the eukaryotic proteome, which challenges the protein structure-function paradigm. These IDPs lack a stable tertiary structure, yet they play a crucial role in the diverse biological process of plants. This study represents the intrinsically disordered nature of a plant-specific DNA binding with one finger transcription factor (DOF-TF). Here, we have investigated the role of OsDOF27 and characterized it as an intrinsically disordered protein. Furthermore, the molecular role of OsDOF27 in thermal stress tolerance has been elucidated. The qRT-PCR analysis revealed that OsDOF27 was significantly upregulated under different abiotic stress treatments in rice, particularly under heat stress. The stress-responsive transcript induction of OsDOF27 was further correlated with enriched abiotic stress-related cis-regulatory elements present in its promoter region. The in vivo functional analysis of the potential role of OsDOF27 in thermotolerance was further studied in yeast and in planta. Ectopic expression of OsDOF27 in yeast implicates thermotolerance response. Furthermore, the rice transgenic lines with overexpressing OsDOF27 revealed a positive role in mitigating heat stress tolerance. Collectively, our results evidently show the intrinsically disorderedness in OsDOF27 and its role in thermal stress response in rice.

19.
Biosci Rep ; 42(10)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36149314

RESUMO

Seed vigor and longevity are important agronomic attributes, as they are essentially associated with crop yield and thus the global economy. Seed longevity is a measure of seed viability and the most essential property in gene bank management since it affects regeneration of seed recycling. Reduced seed life or storability is a serious issue in seed storage since germplasm conservation and agricultural enhancement initiatives rely on it. The irreversible and ongoing process of seed deterioration comprises a complex gene regulatory network and altered metabolism that results in membrane damage, DNA integrity loss, mitochondrial dysregulation, protein damage, and disrupted antioxidative machinery. Carbohydrates and/or sugars, primarily raffinose family oligosaccharides (RFOs), have emerged as feasible components for boosting or increasing seed vigor and longevity in recent years. RFOs are known to perform diverse functions in plants, including abiotic and biotic stress tolerance, besides being involved in regulating seed germination, desiccation tolerance, vigor, and longevity. We emphasized and analyzed the potential impact of RFOs on seed vigor and longevity in this review. Here, we comprehensively reviewed the molecular mechanisms involved in seed longevity, RFO metabolism, and how RFO content is critical and linked with seed vigor and longevity. Further molecular basis, biotechnological approaches, and CRISPR/Cas applications have been discussed briefly for the improvement of seed attributes and ultimately crop production. Likewise, we suggest advancements, challenges, and future possibilities in this area.


Assuntos
Longevidade , Sementes , Longevidade/genética , Oligossacarídeos/metabolismo , Rafinose/metabolismo , Sementes/genética , Açúcares/metabolismo
20.
Front Microbiol ; 13: 981355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118190

RESUMO

Change in global climate has started to show its effect in the form of extremes of temperatures and water scarcity which is bound to impact adversely the global food security in near future. In the current review we discuss the impact of drought on plants and highlight the ability of endophytes, microbes that inhabit the plants asymptomatically, to confer stress tolerance to their host. For this we first describe the symbiotic association between plant and the endophytes and then focus on the molecular and physiological strategies/mechanisms adopted by these endophytes to confer stress tolerance. These include root alteration, osmotic adjustment, ROS scavenging, detoxification, production of phytohormones, and promoting plant growth under adverse conditions. The review further elaborates on how omics-based techniques have advanced our understanding of molecular basis of endophyte mediated drought tolerance of host plant. Detailed analysis of whole genome sequences of endophytes followed by comparative genomics facilitates in identification of genes involved in endophyte-host interaction while functional genomics further unveils the microbial targets that can be exploited for enhancing the stress tolerance of the host. Thus, an amalgamation of endophytes with other sustainable agricultural practices seems to be an appeasing approach to produce climate-resilient crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA