RESUMO
Childhood muscle-related cancer rhabdomyosarcoma is a rare disease with a 50-year unmet clinical need for the patients presented with advanced disease. The rarity of â¼350 cases per year in North America generally diminishes the viability of large-scale, pharmaceutical industry driven drug development efforts for rhabdomyosarcoma. In this study, we performed a large-scale screen of 640,000 compounds to identify the dihydropyridine (DHP) class of anti-hypertensives as a priority compound hit. A structure-activity relationship was uncovered with increasing cell growth inhibition as side chain length increases at the ortho and para positions of the parent DHP molecule. Growth inhibition was consistent across n = 21 rhabdomyosarcoma cell line models. Anti-tumor activity in vitro was paralleled by studies in vivo. The unexpected finding was that the action of DHPs appears to be other than on the DHP receptor (i.e., L-type voltage-gated calcium channel). These findings provide the basis of a medicinal chemistry program to develop dihydropyridine derivatives that retain anti-rhabdomyosarcoma activity without anti-hypertensive effects.
Assuntos
Di-Hidropiridinas , Rabdomiossarcoma , Humanos , Criança , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/química , Relação Estrutura-Atividade , Anti-Hipertensivos/farmacologia , Canais de Cálcio Tipo L/metabolismo , Rabdomiossarcoma/tratamento farmacológico , Di-Hidropiridinas/farmacologiaRESUMO
The rates of diabetes, obesity, and metabolic disease have reached epidemic proportions worldwide. In recent years there has been renewed interest in combating these diseases not only by modifying energy intake and lifestyle factors, but also by inducing endogenous energy expenditure. This approach has largely been stimulated by the recent recognition that brown adipose tissue (BAT)-long known to promote heat production and energy expenditure in infants and hibernating mammals-also exists in adult humans. This landmark finding relied on the use of clinical fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography, and imaging techniques continue to play a crucial and increasingly central role in understanding BAT physiology and function. Herein, the authors review the origins of BAT imaging, discuss current preclinical and clinical strategies for imaging BAT, and discuss imaging methods that will provide crucial insight into metabolic disease and how it may be treated by modulating BAT activity. (©) RSNA, 2016.
Assuntos
Tecido Adiposo Marrom/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/tendências , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , UltrassonografiaRESUMO
The tendons of the wrist are commonly symptomatic. They can be injured, infected, or inflamed. Magnetic resonance imaging and ultrasonography are useful tools for evaluating the wrist. Pathologic conditions of the wrist tendons include de Quervain tenosynovitis, extensor carpi ulnaris tendinopathy, rheumatoid tenosynovitis, infectious synovitis, tendon tears, hydroxyapatite deposition disease, intersection syndrome, tenosynovial giant cell tumor, and fibroma of the tendon sheath. In this article, we review the normal appearance of the wrist tendons, discuss relevant anatomy, and give an overview of common pathologic conditions affecting the wrist tendons. Online supplemental material is available for this article. ©RSNA, 2016.
Assuntos
Imageamento por Ressonância Magnética/métodos , Tendinopatia/diagnóstico por imagem , Traumatismos dos Tendões/diagnóstico por imagem , Tenossinovite/diagnóstico por imagem , Ultrassonografia/métodos , Traumatismos do Punho/diagnóstico por imagem , Punho/diagnóstico por imagem , Medicina Baseada em Evidências , Humanos , Aumento da Imagem/métodos , Imagem Multimodal/métodos , Posicionamento do Paciente/métodosRESUMO
Osteoid osteoma is a relatively common, benign, painful tumor of bone. It is widely believed to run a course culminating in spontaneous regression. The tumor can usually be eliminated by excision or ablation, although it may recur locally. Although management has classically been surgical, thermocoagulation via percutaneously delivered radiofrequency energy has demonstrated excellent results, typically resulting in durable response following a single treatment. Here, we present an unusual case of serially recurrent pathologically proven pediatric osteoid osteoma, treated by radiofrequency ablation five times over the course of 11 years. Limitations of RF ablation of osteoid osteoma and possible factors predisposing to incomplete treatment or recurrence are discussed.
Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/prevenção & controle , Osteoma Osteoide/diagnóstico por imagem , Osteoma Osteoide/cirurgia , Tíbia , Criança , Pré-Escolar , Humanos , Lactente , Estudos Longitudinais , Masculino , Tomografia Computadorizada por Raios X , Resultado do TratamentoRESUMO
Chromatin-induced spindle assembly depends on regulation of microtubule-depolymerizing proteins by the chromosomal passenger complex (CPC), consisting of Incenp, Survivin, Dasra (Borealin), and the kinase Aurora B, but the mechanism and significance of the spatial regulation of Aurora B activity remain unclear. Here, we show that the Aurora B pathway is suppressed in the cytoplasm of Xenopus egg extract by phosphatases, but that it becomes activated by chromatin via a Ran-independent mechanism. While spindle microtubule assembly normally requires Dasra-dependent chromatin binding of the CPC, this function of Dasra can be bypassed by clustering Aurora B-Incenp by using anti-Incenp antibodies, which stimulate autoactivation among bound complexes. However, such chromatin-independent Aurora B pathway activation promotes centrosomal microtubule assembly and produces aberrant achromosomal spindle-like structures. We propose that chromosomal enrichment of the CPC results in local kinase autoactivation, a mechanism that contributes to the spatial regulation of spindle assembly and possibly to other mitotic processes.
Assuntos
Cromossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Xenopus/metabolismo , Animais , Anticorpos/imunologia , Aurora Quinases , Extratos Celulares , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/imunologia , Proteínas Cromossômicas não Histona/metabolismo , Ativação Enzimática , Histonas/metabolismo , Microtúbulos/metabolismo , Óvulo , Fosforilação , Ligação Proteica , Fuso Acromático/química , Estatmina/metabolismo , Proteínas de Xenopus/imunologia , Proteínas de Xenopus/metabolismo , Proteína ran de Ligação ao GTP/metabolismoRESUMO
The fusion of muscle precursor cells is a required event for proper skeletal muscle development and regeneration. Numerous proteins have been implicated to function in myoblast fusion; however, the majority are expressed in diverse tissues and regulate numerous cellular processes. How myoblast fusion is triggered and coordinated in a muscle-specific manner has remained a mystery for decades. Through the discovery of two muscle-specific fusion proteins, Myomaker and Myomerger-Minion, we are now primed to make significant advances in our knowledge of myoblast fusion. This article reviews the latest findings regarding the biology of Myomaker and Minion-Myomerger, places these findings in the context of known pathways in mammalian myoblast fusion, and highlights areas that require further investigation. As our understanding of myoblast fusion matures so does our potential ability to manipulate cell fusion for therapeutic purposes.
Assuntos
Fusão Celular , Desenvolvimento Muscular/fisiologia , Mioblastos/fisiologia , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Músculo Esquelético/metabolismo , Mutagênese , Transdução de Sinais/fisiologiaRESUMO
The balance between stem cell quiescence and proliferation in skeletal muscle is tightly controlled, but perturbed in a variety of disease states. Despite progress in identifying activators of stem cell proliferation, the niche factor(s) responsible for quiescence induction remain unclear. Here we report an in vivo imaging-based screen which identifies Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent inducer of muscle stem cell (MuSC, satellite cell) quiescence. OSM is produced by muscle fibers, induces reversible MuSC cell cycle exit, and maintains stem cell regenerative capacity as judged by serial transplantation. Conditional OSM receptor deletion in satellite cells leads to stem cell depletion and impaired regeneration following injury. These results identify Oncostatin M as a secreted niche factor responsible for quiescence induction, and for the first time establish a direct connection between induction of quiescence, stemness, and transplantation potential in solid organ stem cells.
Assuntos
Músculo Esquelético/metabolismo , Oncostatina M/fisiologia , Células-Tronco/citologia , Alelos , Animais , Ciclo Celular , Diferenciação Celular , Divisão Celular , Linhagem Celular , Proliferação de Células , Feminino , Humanos , Interleucina-6/metabolismo , Luminescência , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Transdução de SinaisRESUMO
Although recent evidence has pointed to the existence of small open reading frame (smORF)-encoded microproteins in mammals, their function remains to be determined. Skeletal muscle development requires fusion of mononuclear progenitors to form multinucleated myotubes, a critical but poorly understood process. Here we report the identification of Minion (microprotein inducer of fusion), a smORF encoding an essential skeletal muscle specific microprotein. Myogenic progenitors lacking Minion differentiate normally but fail to form syncytial myotubes, and Minion-deficient mice die perinatally and demonstrate a marked reduction in fused muscle fibres. The fusogenic activity of Minion is conserved in the human orthologue, and co-expression of Minion and the transmembrane protein Myomaker is sufficient to induce cellular fusion accompanied by rapid cytoskeletal rearrangement, even in non-muscle cells. These findings establish Minion as a novel microprotein required for muscle development, and define a two-component programme for the induction of mammalian cell fusion. Moreover, these data also significantly expand the known functions of smORF-encoded microproteins.
Assuntos
Citoesqueleto/fisiologia , Proteínas de Membrana/metabolismo , Músculo Esquelético/fisiologia , Fases de Leitura Aberta , Regiões 3' não Traduzidas , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Feminino , Genótipo , Pulmão/embriologia , Masculino , Espectrometria de Massas , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mioblastos/citologia , Regeneração , Células-TroncoRESUMO
PURPOSE: Sodium fluoride PET (18F-NaF) has recently reemerged as a valuable method for detection of osseous metastasis, with recent work highlighting the potential of coadministered 18F-NaF and 18F-FDG PET/CT in a single combined imaging examination. We further examined the potential of such combined examinations by comparing dual tracer 18F-NaF18/F-FDG PET/CT with CT alone for detection of osseous metastasis. PATIENTS AND METHODS: Seventy-five participants with biopsy-proven malignancy were consecutively enrolled from a single center and underwent combined 18F-NaF/18F-FDG PET/CT and diagnostic CT scans. PET/CT as well as CT only images were reviewed in blinded fashion and compared with the results of clinical, imaging, or histological follow-up as a truth standard. RESULTS: Sensitivity of the combined 18F-NaF/18F-FDG PET/CT was higher than that of CT alone (97.4% vs 66.7%). CT and 18F-NaF/18F-FDG PET/CT were concordant in 73% of studies. Of 20 discordant cases, 18F-NaF/18F-FDG PET/CT was correct in 19 (95%). Three cases were interpreted concordantly but incorrectly, and all 3 were false positives. A single case of osseous metastasis was detected by CT alone, but not by 18F-NaF/18F-FDG PET/CT. CONCLUSIONS: Combined 18F-NaF/18F-FDG PET/CT outperforms CT alone and is highly sensitive and specific for detection of osseous metastases. The concordantly interpreted false-positive cases demonstrate the difficulty of distinguishing degenerative from malignant disease, whereas the single case of metastasis seen on CT but not PET highlights the need for careful review of CT images in multimodality studies.
Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Fluoreto de Sódio , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Metástase Neoplásica/diagnóstico por imagem , Compostos Radiofarmacêuticos/administração & dosagem , Sensibilidade e Especificidade , Fluoreto de Sódio/administração & dosagemRESUMO
BACKGROUND: Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements. RESULTS: Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules. CONCLUSIONS: Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis.
RESUMO
CONTEXT: The elbow is a complex joint and commonly injured in athletes. Evaluation of the elbow by magnetic resonance imaging (MRI) is an important adjunct to the physical examination. To facilitate accurate diagnosis, a concise structured approach to evaluation of the elbow by MRI is presented. EVIDENCE ACQUISITION: A PubMed search was performed using the terms elbow and MR imaging. No limits were set on the range of years searched. Articles were reviewed for relevance with an emphasis of the MRI appearance of normal anatomy and common pathology of the elbow. RESULTS: The spectrum of common elbow disorders varies from obvious acute fractures to chronic overuse injuries whose imaging manifestations can be subtle. MRI evaluation should include bones; lateral, medial, anterior, and posterior muscle groups; the ulnar and radial collateral ligaments; as well as nerves, synovium, and bursae. Special attention should be paid to the valgus extension overload syndrome and the MRI appearance of associated injuries when evaluating throwing athletes. CONCLUSION: MRI evaluation of the elbow should follow a structured approach to facilitate thoroughness, accuracy, and speed. Such an approach should cover bone, cartilage, muscle, tendons, ligaments, synovium, bursae, and nerves.
RESUMO
Epigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself. As with methylation of H3 lysine 9, autocatalytic G9a methylation is necessary and sufficient to mediate in vivo interaction with the epigenetic regulator heterochromatin protein 1 (HP1), and this methyl-dependent interaction can be reversed by adjacent G9a phosphorylation. NMR analysis indicates that the HP1 chromodomain recognizes methyl-G9a through a binding mode similar to that used in recognition of methyl-H3K9, demonstrating that the chromodomain functions as a generalized methyl-lysine binding module. These data reveal histone-like modification cassettes - or "histone mimics" - as a distinct class of nonhistone methylation targets and directly extend the principles of the histone code to the regulation of nonhistone proteins.
Assuntos
Metilação de DNA , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Mimetismo Molecular , Complexos Multiproteicos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Humanos , Lisina/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas MetiltransferasesRESUMO
In cells lacking centrosomes, such as those found in female meiosis, chromosomes must nucleate and stabilize microtubules in order to form a bipolar spindle. Here we report the identification of Dasra A and Dasra B, two new components of the vertebrate chromosomal passenger complex containing Incenp, Survivin, and the kinase Aurora B, and demonstrate that this complex is required for chromatin-induced microtubule stabilization and spindle formation. The failure of microtubule stabilization caused by depletion of the chromosomal passenger complex was rescued by codepletion of the microtubule-depolymerizing kinesin MCAK, whose activity is negatively regulated by Aurora B. By contrast, we present evidence that the Ran-GTP pathway of chromatin-induced microtubule nucleation does not require the chromosomal passenger complex, indicating that the mechanisms of microtubule assembly by these two pathways are distinct. We propose that the chromosomal passenger complex regulates local MCAK activity to permit spindle formation via stabilization of chromatin-associated microtubules.