Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477976

RESUMO

MOTIVATION: Post-genome-wide association studies (pGWAS) analysis is designed to decipher the functional consequences of significant single-nucleotide polymorphisms (SNPs) in the era of GWAS. This can be translated into research insights and clinical benefits such as the effectiveness of strategies for disease screening, treatment and prevention. However, the setup of pGWAS (pGWAS) tools can be quite complicated, and it mostly requires big data. The challenge however is, scientists are required to have sufficient experience with several of these technically complex and complicated tools in order to complete the pGWAS analysis. RESULTS: We present SysBiolPGWAS, a pGWAS web application that provides a comprehensive functionality for biologists and non-bioinformaticians to conduct several pGWAS analyses to overcome the above challenges. It provides unique functionalities for analysis involving multi-omics datasets and visualization using various bioinformatics tools. SysBiolPGWAS provides access to individual pGWAS tools and a novel custom pGWAS pipeline that integrates several individual pGWAS tools and data. The SysBiolPGWAS app was developed to be a one-stop shop for pGWAS analysis. It targets researchers in the area of the human genome and performs its analysis mainly in the autosomal chromosomes. AVAILABILITY AND IMPLEMENTATION: SysBiolPGWAS web app was developed using JavaScript/TypeScript web frameworks and is available at: https://spgwas.waslitbre.org/. All codes are available in this GitHub repository https://github.com/covenant-university-bioinformatics.


Assuntos
Biologia Computacional , Estudo de Associação Genômica Ampla , Humanos , Software , Multiômica , Polimorfismo de Nucleotídeo Único
2.
J Biomed Inform ; 122: 103900, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506960

RESUMO

Drafting and writing a data management plan (DMP) is increasingly seen as a key part of the academic research process. A DMP is a document that describes how a researcher will collect, document, describe, share, and preserve the data that will be generated as part of a research project. The DMP illustrates the importance of utilizing best practices through all stages of working with data while ensuring accessibility, quality, and longevity of the data. The benefits of writing a DMP include compliance with funder and institutional mandates; making research more transparent (for reproduction and validation purposes); and FAIR (findable, accessible, interoperable, reusable); protecting data subjects and compliance with the General Data Protection Regulation (GDPR) and/or local data protection policies. In this review, we highlight the importance of a DMP in modern biomedical research, explaining both the rationale and current best practices associated with DMPs. In addition, we outline various funders' requirements concerning DMPs and discuss open-source tools that facilitate the development and implementation of a DMP. Finally, we discuss DMPs in the context of African research, and the considerations that need to be made in this regard.


Assuntos
Pesquisa Biomédica , Gerenciamento de Dados , África , Genômica , Humanos , Projetos de Pesquisa
3.
Genome Med ; 15(1): 87, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904243

RESUMO

Early identification of genetic risk factors for complex diseases can enable timely interventions and prevent serious outcomes, including mortality. While the genetics underlying many Mendelian diseases have been elucidated, it is harder to predict risk for complex diseases arising from the combined effects of many genetic variants with smaller individual effects on disease aetiology. Polygenic risk scores (PRS), which combine multiple contributing variants to predict disease risk, have the potential to influence the implementation for precision medicine. However, the majority of existing PRS were developed from European data with limited transferability to African populations. Notably, African populations have diverse genetic backgrounds, and a genomic architecture with smaller haplotype blocks compared to European genomes. Subsequently, growing evidence shows that using large-scale African ancestry cohorts as discovery for PRS development may generate more generalizable findings. Here, we (1) discuss the factors contributing to the poor transferability of PRS in African populations, (2) showcase the novel Africa genomic datasets for PRS development, (3) explore the potential clinical utility of PRS in African populations, and (4) provide insight into the future of PRS in Africa.


Assuntos
População Negra , Predisposição Genética para Doença , Humanos , Fatores de Risco , Medição de Risco , População Negra/genética , África , Estudo de Associação Genômica Ampla
4.
Glob Health Epidemiol Genom ; 2023: 6693323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766808

RESUMO

Modern biomedical research is characterised by its high-throughput and interdisciplinary nature. Multiproject and consortium-based collaborations requiring meaningful analysis of multiple heterogeneous phenotypic datasets have become the norm; however, such analysis remains a challenge in many regions across the world. An increasing number of data harmonisation efforts are being undertaken by multistudy collaborations through either prospective standardised phenotype data collection or retrospective phenotype harmonisation. In this regard, the Phenotype Harmonisation Working Group (PHWG) of the Human Heredity and Health in Africa (H3Africa) consortium aimed to facilitate phenotype standardisation by both promoting the use of existing data collection standards (hosted by PhenX), adapting existing data collection standards for appropriate use in low- and middle-income regions such as Africa, and developing novel data collection standards where relevant gaps were identified. Ultimately, the PHWG produced 11 data collection kits, consisting of 82 protocols, 38 of which were existing protocols, 17 were adapted, and 27 were novel protocols. The data collection kits will facilitate phenotype standardisation and harmonisation not only in Africa but also across the larger research community. In addition, the PHWG aims to feed back adapted and novel protocols to existing reference platforms such as PhenX.


Assuntos
Estudos Prospectivos , Humanos , Estudos Retrospectivos , África , Coleta de Dados , Fenótipo
5.
Front Genet ; 13: 911101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303548

RESUMO

Prostate cancer (PCa) is the second most commonly diagnosed in men worldwide and one of the most frequent cancers in men in Africa. The heterogeneity of this cancer fosters the need to identify potential genetic risk factors/biomarkers. Omics variations may significantly contribute to early diagnosis and personalized treatment. However, there are few genomic studies of this disease in African populations. This review sheds light on the status of genomics research on PCa in Africa and outlines the common variants identified thus far. The allele frequencies of the most significant SNPs in Afro-native, Afro-descendants, and European populations were compared. We advocate how these few but promising data will aid in understanding, better diagnosing, and precisely treating this cancer and the need for further collaborative research on the genomics of PCa in the African continent.

6.
J Pers Med ; 12(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35207753

RESUMO

Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available.

7.
F1000Res ; 10: 1002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222990

RESUMO

Genome-wide association studies (GWAS) provide  huge information on statistically significant single-nucleotide polymorphisms (SNPs) associated with various human complex traits and diseases. By performing GWAS studies, scientists have successfully identified the association of hundreds of thousands to  millions of SNPs to a single phenotype. Moreover, the association of some SNPs with rare diseases has been intensively tested. However, classic GWAS studies have not yet provided solid, knowledgeable insight into functional and biological mechanisms underlying phenotypes or mechanisms of diseases. Therefore, several post-GWAS (pGWAS) methods have been recommended. Currently, there is no simple scientific document to provide a quick guide for performing pGWAS analysis. pGWAS is a crucial step for a better understanding of the biological machinery beyond the SNPs. Here, we provide an overview to performing pGWAS analysis and demonstrate the challenges behind each method. Furthermore, we direct readers to key articles for each pGWAS method and present the overall issues in pGWAS analysis.  Finally, we include a custom pGWAS pipeline to guide new users when performing their research.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Fenótipo
8.
Database (Oxford) ; 20212021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33864455

RESUMO

African genomic medicine and microbiome datasets are usually not well characterized in terms of their origin, making it difficult to find and extract data for specific African ethnic groups or even countries. The Pan-African H3Africa Bioinformatics Network (H3ABioNet) recognized the need for developing data portals for African genomic medicine and African microbiomes to address this and ran a hackathon to initiate their development. The two portals were designed and significant progress was made in their development during the hackathon. All the participants worked in a very synergistic and collaborative atmosphere in order to achieve the hackathon's goals. The participants were divided into content and technical teams and worked over a period of 6 days. In response to one of the survey questions of what the participants liked the most during the hackathon, 55% of the hackathon participants highlighted the familial and friendly atmosphere, the team work and the diversity of team members and their expertise. This paper describes the preparations for the portals hackathon and the interaction between the participants and reflects upon the lessons learned about its impact on successfully developing the two data portals as well as building scientific expertise of younger African researchers. Database URL: The code for developing the two portals was made publicly available in GitHub repositories: [https://github.com/codemeleon/Database; https://github.com/codemeleon/AfricanMicrobiomePortal].


Assuntos
Biologia Computacional , Microbiota , Bases de Dados Factuais , Genoma , Genômica , Humanos , Microbiota/genética
9.
OMICS ; 25(4): 213-233, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33794662

RESUMO

Following the publication of the first human genome, OMICs research, including genomics, transcriptomics, proteomics, and metagenomics, has been on the rise. OMICs studies revealed the complex genetic diversity among human populations and challenged our understandings of genotype-phenotype correlations. Africa, being the cradle of the first modern humans, is distinguished by a large genetic diversity within its populations and rich ethnolinguistic history. However, the available human OMICs tools and databases are not representative of this diversity, therefore creating significant gaps in biomedical research. African scientists, students, and publics are among the key contributors to OMICs systems science. This expert review examines the pressing issues in human OMICs research, education, and development in Africa, as seen through a lens of computational biology, public health relevant technology innovation, critically-informed science governance, and how best to harness OMICs data to benefit health and societies in Africa and beyond. We underscore the disparities between North and Sub-Saharan Africa at different levels. A harmonized African ethnolinguistic classification would help address annotation challenges associated with population diversity. Finally, building on the existing strategic research initiatives, such as the H3Africa and H3ABioNet Consortia, we highly recommend addressing large-scale multidisciplinary research challenges, strengthening research collaborations and knowledge transfer, and enhancing the ability of African researchers to influence and shape national and international research, policy, and funding agendas. This article and analysis contribute to a deeper understanding of past and current challenges in the African OMICs innovation ecosystem, while also offering foresight on future innovation trajectories.


Assuntos
Pesquisa Biomédica , Biologia Computacional , África , Ecossistema , Genômica , Humanos
10.
Per Med ; 17(2): 155-170, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32125935

RESUMO

Effective interventions and treatments for complex diseases have been implemented globally, however, coverage in Africa has been comparatively lower due to lack of capacity, clinical applicability and knowledge on the genetic contribution to disease and treatment. Currently, there is a scarcity of genetic data on African populations, which have enormous genetic diversity. Pharmacogenomics studies have the potential to revolutionise treatment of diseases, therefore, African populations are likely to benefit from these approaches to identify likely responders, reduce adverse side effects and optimise drug dosing. This review discusses clinical pharmacogenetics studies conducted in African populations, focusing on studies that examined drug response in complex diseases relevant to healthcare. Several pharmacogenetics associations have emerged from African studies, as have gaps in knowledge.


Assuntos
População Negra/genética , Variantes Farmacogenômicos , Ensaios Clínicos como Assunto , Estudos de Associação Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA