Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Subcell Biochem ; 97: 89-97, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779915

RESUMO

Extracellular vesicles (EVs) are described as membranous vesicles that are secreted by various cell types. EVs can be categorised as exosomes, ectosomes, apoptotic bodies, large oncosomes and migrasomes. EVs are heterogeneous in nature according to their origin, mode of release, size, and biochemical contents. Herein, we discuss a recently discovered subpopulation of EVs called 'exomeres'. Unlike the other subtypes of EVs, exomeres are defined as non-membranous nanovesicles with a size ≤50 nm. They can be isolated using asymmetric-flow field-flow fractionation as well as ultracentrifugation. The cargo of exomeres are beginning to be unravelled and are highlighted to be enriched with proteins implicated in regulating metabolic pathways. Consistent with other types of EVs, exomeres also contain nucleic acids and lipids which can be delivered to recipient cells. These discoveries highlight the complex heterogeneity of EVs and thereby necessitates further attention to understand the nature of each subpopulation more exclusively. Overall, this chapter describes the current knowledge on exomeres.


Assuntos
Exossomos , Vesículas Extracelulares , Transporte Biológico , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Lipídeos , Proteínas/metabolismo
2.
Cells ; 12(20)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887335

RESUMO

Milk is a complex biological fluid that has high-quality proteins including growth factors and also contains extracellular vesicles (EVs). EVs are a lipid bilayer containing vesicles that contain proteins, metabolites and nucleic acids. Several studies have proposed that EVs in cow milk can survive the gut and can illicit cross-species communication in the consuming host organism. In this study, we isolated and characterized extracellular vesicles from the raw milk of the four species of the Bovidae family, namely cow, sheep, goat and buffalo, that contribute 99% of the total milk consumed globally. A comparative proteomic analysis of these vesicles was performed to pinpoint their potential functional role in health and disease. Vesicles sourced from buffalo and cow milk were particularly enriched with proteins implicated in modulating the immune system. Furthermore, functional studies were performed to determine the anti-cancer effects of these vesicles. The data obtained revealed that buffalo-milk-derived EVs induced significantly higher cell death in colon cancer cells. Overall, the results from this study highlight the potent immunoregulatory and anti-cancer nature of EVs derived from the milk of Bovidae family members.


Assuntos
Vesículas Extracelulares , Leite , Feminino , Bovinos , Animais , Ovinos , Búfalos , Proteômica/métodos , Vesículas Extracelulares/metabolismo , Cabras
3.
Oncogenesis ; 11(1): 38, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821197

RESUMO

MiR-21 was identified as a gene whose expression correlated with the extent of metastasis of murine mammary tumours. Since miR-21 is recognised as being associated with poor prognosis in cancer, we investigated its contribution to mammary tumour growth and metastasis in tumours with capacity for spontaneous metastasis. Unexpectedly, we found that suppression of miR-21 activity in highly metastatic tumours resulted in regression of primary tumour growth in immunocompetent mice but did not impede growth in immunocompromised mice. Analysis of the immune infiltrate of the primary tumours at the time when the tumours started to regress revealed an influx of both CD4+ and CD8+ activated T cells and a reduction in PD-L1+ infiltrating monocytes, providing an explanation for the observed tumour regression. Loss of anti-tumour immune suppression caused by decreased miR-21 activity was confirmed by transcriptomic analysis of primary tumours. This analysis also revealed reduced expression of genes associated with cell cycle progression upon loss of miR-21 activity. A second activity of miR-21 was the promotion of metastasis as shown by the loss of metastatic capacity of miR-21 knockdown tumours established in immunocompromised mice, despite no impact on primary tumour growth. A proteomic analysis of tumour cells with altered miR-21 activity revealed deregulation of proteins known to be associated with tumour progression. The development of therapies targeting miR-21, possibly via targeted delivery to tumour cells, could be an effective therapy to combat primary tumour growth and suppress the development of metastatic disease.

4.
Nat Commun ; 12(1): 3950, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168137

RESUMO

The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs. Milk-derived EVs orally administered to mice implanted with colorectal and breast cancer cells reduce the primary tumor burden. Intriguingly, despite the reduction in primary tumor growth, milk-derived EVs accelerate metastasis in breast and pancreatic cancer mouse models. Proteomic and biochemical analysis reveal the induction of senescence and epithelial-to-mesenchymal transition in cancer cells upon treatment with milk-derived EVs. Timing of EV administration is critical as oral administration after resection of the primary tumor reverses the pro-metastatic effects of milk-derived EVs in breast cancer models. Taken together, our study provides context-based and opposing roles of milk-derived EVs as metastasis inducers and suppressors.


Assuntos
Vesículas Extracelulares , Leite/citologia , Neoplasias Experimentais/patologia , Administração Oral , Animais , Disponibilidade Biológica , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Bovinos , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Feminino , Humanos , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochim Biophys Acta Proteins Proteom ; 1867(12): 140203, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30822540

RESUMO

Extracellular vesicles (EVs) are released by cells into the extracellular milieu to facilitate intercellular communication in both physiological and pathological condition. EVs contain selective repertoires of proteins, RNAs, lipids and metabolites that moderate signalling pathways in the recipient cells. The enrichment of a particular set of proteins or RNAs within the EVs highlights the existence of specific sorting mechanisms that orchestrate the selective packaging of the cargo. The molecular machinery of cargo sorting has remained obscure over the years and functional studies are required to understand this complex mechanism. In this article, we offer a brief overview of the molecular mechanisms that are known to regulate sorting of various molecules into EVs. We also discuss how different pathways of biogenesis alter the exosomal cargo as well and the implications of the cellular state on the content of the EVs. Understanding the sorting of exosomal cargo could further be exploited in clinical settings for targeted drug delivery and to block disease progression.


Assuntos
Vesículas Extracelulares/metabolismo , Humanos , Metabolismo dos Lipídeos , Transporte Proteico , Proteínas/metabolismo , RNA/metabolismo
6.
Front Plant Sci ; 10: 1610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998330

RESUMO

Extracellular vesicles (EVs) represent a system for the coordinated secretion of a variety of molecular cargo including proteins, lipids, nucleic acids, and metabolites. They have an essential role in intercellular communication in multicellular organisms and have more recently been implicated in host-pathogen interactions. Study of the role for EVs in fungal biology has focused on pathogenic yeasts that are major pathogens in humans. In this study we have expanded the investigation of fungal EVs to plant pathogens, specifically the major cotton pathogen Fusarium oxysporum f. sp. vasinfectum. EVs isolated from F. oxysporum f. sp. vasinfectum culture medium have a morphology and size distribution similar to EVs from yeasts such as Candida albicans and Cryptococcus neoformans. A unique feature of the EVs from F. oxysporum f. sp. vasinfectum is their purple color, which is predicted to arise from a napthoquinone pigment being packaged into the EVs. Proteomic analysis of F. oxysporum f. sp. vasinfectum EVs revealed that they are enriched in proteins that function in synthesis of polyketides as well as proteases and proteins that function in basic cellular processes. Infiltration of F. oxysporum f. sp. vasinfectum EVs into the leaves of cotton or N. benthamiana plants led to a phytotoxic response. These observations lead to the hypothesis that F. oxysporum f. sp. vasinfectum EVs are likely to play a crucial role in the infection process.

7.
J Extracell Vesicles ; 8(1): 1690217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819794

RESUMO

Mutations in ß-catenin, especially at the residues critical for its degradation, render it constitutively active. Here, we show that mutant ß-catenin can be transported via extracellular vesicles (EVs) and activate Wnt signalling pathway in the recipient cells. An integrative proteogenomic analysis identified the presence of mutated ß-catenin in EVs secreted by colorectal cancer (CRC) cells. Follow-up experiments established that EVs released from LIM1215 CRC cells stimulated Wnt signalling pathway in the recipient cells with wild-type ß-catenin. SILAC-based quantitative proteomics analysis confirmed the transfer of mutant ß-catenin to the nucleus of the recipient cells. In vivo tracking of DiR-labelled EVs in mouse implanted with RKO CRC cells revealed its bio-distribution, confirmed the activation of Wnt signalling pathway in tumour cells and increased the tumour burden. Overall, for the first time, this study reveals that EVs can transfer mutant ß-catenin to the recipient cells and promote cancer progression.

8.
Nat Commun ; 10(1): 3637, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406163

RESUMO

Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer.


Assuntos
Fibroblastos Associados a Câncer/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética
9.
Methods Mol Biol ; 1549: 67-74, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27975284

RESUMO

Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry still remains critical for protein identification. In addition, the complexity of the generated MS/MS spectra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unassigned tandem MS spectra are discussed.


Assuntos
Proteômica/métodos , Espectrometria de Massas em Tandem , Biologia Computacional/métodos , Bases de Dados de Proteínas , Peptídeos , Proteínas , Software , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
10.
Methods Mol Biol ; 1549: 31-43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27975282

RESUMO

The precise quantification of changes between various physiological states in a biological system is highly complex in nature. Over the past few years, in combination with classical methods, mass spectrometry based approaches have become an indispensable tool in deciphering exact abundance of proteins in composite mixtures. The technique is now well established and employs both label-based and label-free quantitation strategies. Label-based quantitation methods utilize stable isotope labels which are incorporated within the peptides, introducing an expectable mass difference within the two or more experimental conditions. In contrast, label-free proteomics quantitates both relative and absolute protein quantity by utilizing signal intensity and spectral counting of peptides. This chapter focuses on the commonly used quantitative mass spectrometry methods for high-throughput proteomic analysis.


Assuntos
Proteínas , Proteoma , Proteômica/métodos , Área Sob a Curva , Biologia Computacional/métodos , Marcação por Isótopo , Espectrometria de Massas/métodos , Proteínas/química , Proteínas/metabolismo , Software , Fluxo de Trabalho
11.
Sci Rep ; 7(1): 5933, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725021

RESUMO

Exosomes are extracellular vesicles secreted by multiple cell types into the extracellular space. They contain cell-state specific cargos which often reflects the (patho)physiological condition of the cells/organism. Milk contains high amounts of exosomes and it is unclear whether their cargo is altered based on the lactation stage of the organism. Here, we isolated exosomes from bovine milk that were obtained at various stages of lactation and examined the content by quantitative proteomics. Exosomes were isolated by OptiPrep density gradient centrifugation from milk obtained from cow after 24, 48 and 72 h post calving. As control, exosomes were also isolated from cows during mid-lactation period which has been referred to as mature milk (MM). Biochemical and biophysical characterization of exosomes revealed the high abundance of exosomes in colostrum and MM samples. Quantitative proteomics analysis highlighted the change in the proteomic cargo of exosomes based on the lactation state of the cow. Functional enrichment analysis revealed that exosomes from colostrum are significantly enriched with proteins that can potentially regulate the immune response and growth. This study highlights the importance of exosomes in colostrum and hence opens up new avenues to exploit these vesicles in the regulation of the immune response and growth.


Assuntos
Bovinos/crescimento & desenvolvimento , Bovinos/imunologia , Colostro/metabolismo , Exossomos/metabolismo , Proteínas do Leite/metabolismo , Leite/metabolismo , Animais , Biomarcadores/metabolismo , Fenômenos Biofísicos , Exossomos/ultraestrutura , Proteômica
12.
J Mol Biol ; 428(4): 688-692, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26434508

RESUMO

Exosomes are membranous vesicles that are released by a variety of cells into the extracellular microenvironment and are implicated in intercellular communication. As exosomes contain RNA, proteins and lipids, there is a significant interest in characterizing the molecular cargo of exosomes. Here, we describe ExoCarta (http://www.exocarta.org), a manually curated Web-based compendium of exosomal proteins, RNAs and lipids. Since its inception, the database has been highly accessed (>54,000 visitors from 135 countries). The current version of ExoCarta hosts 41,860 proteins, >7540 RNA and 1116 lipid molecules from more than 286 exosomal studies annotated with International Society for Extracellular Vesicles minimal experimental requirements for definition of extracellular vesicles. Besides, ExoCarta features dynamic protein-protein interaction networks and biological pathways of exosomal proteins. Users can download most often identified exosomal proteins based on the number of studies. The downloaded files can further be imported directly into FunRich (http://www.funrich.org) tool for additional functional enrichment and interaction network analysis.


Assuntos
Bases de Dados de Compostos Químicos , Exossomos/química , Exossomos/metabolismo , Lipídeos/análise , Proteoma/análise , RNA/análise , Internet
13.
J Biomed Semantics ; 7: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27076901

RESUMO

BACKGROUND: To address the lack of standard terminology to describe extracellular RNA (exRNA) data/metadata, we have launched an inter-community effort to extend the Gene Ontology (GO) with subcellular structure concepts relevant to the exRNA domain. By extending GO in this manner, the exRNA data/metadata will be more easily annotated and queried because it will be based on a shared set of terms and relationships relevant to extracellular research. METHODS: By following a consensus-building process, we have worked with several academic societies/consortia, including ERCC, ISEV, and ASEMV, to identify and approve a set of exRNA and extracellular vesicle-related terms and relationships that have been incorporated into GO. In addition, we have initiated an ongoing process of extractions of gene product annotations associated with these terms from Vesiclepedia and ExoCarta, conversion of the extracted annotations to Gene Association File (GAF) format for batch submission to GO, and curation of the submitted annotations by the GO Consortium. As a use case, we have incorporated some of the GO terms into annotations of samples from the exRNA Atlas and implemented a faceted search interface based on such annotations. RESULTS: We have added 7 new terms and modified 9 existing terms (along with their synonyms and relationships) to GO. Additionally, 18,695 unique coding gene products (mRNAs and proteins) and 963 unique non-coding gene products (ncRNAs) which are associated with the terms: "extracellular vesicle", "extracellular exosome", "apoptotic body", and "microvesicle" were extracted from ExoCarta and Vesiclepedia. These annotations are currently being processed for submission to GO. CONCLUSIONS: As an inter-community effort, we have made a substantial update to GO in the exRNA context. We have also demonstrated the utility of some of the new GO terms for sample annotation and metadata search.


Assuntos
Vesículas Extracelulares/genética , Ontologia Genética , RNA/genética , Bases de Dados Genéticas , Humanos , Anotação de Sequência Molecular , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA