RESUMO
Aerosols in Titan's atmosphere play an important role in determining its thermal structure. They also serve as sinks for organic vapours and can act as condensation nuclei for the formation of clouds, where the condensation efficiency will depend on the chemical composition of the aerosols. So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 degrees C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols.
Assuntos
Meio Ambiente Extraterreno/química , Compostos Orgânicos/análise , Saturno , Aerossóis/química , Amônia/análise , Atmosfera/química , Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Gases/química , Temperatura Alta , Cianeto de Hidrogênio/análise , Nitrogênio/análiseRESUMO
The Earth's equatorial stratosphere shows oscillations in which the east-west winds reverse direction and the temperatures change cyclically with a period of about two years. This phenomenon, called the quasi-biennial oscillation, also affects the dynamics of the mid- and high-latitude stratosphere and weather in the lower atmosphere. Ground-based observations have suggested that similar temperature oscillations (with a 4-5-yr cycle) occur on Jupiter, but these data suffer from poor vertical resolution and Jupiter's stratospheric wind velocities have not yet been determined. Here we report maps of temperatures and winds with high spatial resolution, obtained from spacecraft measurements of infrared spectra of Jupiter's stratosphere. We find an intense, high-altitude equatorial jet with a speed of approximately 140 m s(-1), whose spatial structure resembles that of a quasi-quadrennial oscillation. Wave activity in the stratosphere also appears analogous to that occurring on Earth. A strong interaction between Jupiter and its plasma environment produces hot spots in its upper atmosphere and stratosphere near its poles, and the temperature maps define the penetration of the hot spots into the stratosphere.
RESUMO
Temperatures obtained from early Cassini infrared observations of Titan show a stratopause at an altitude of 310 kilometers (and 186 kelvin at 15 degrees S). Stratospheric temperatures are coldest in the winter northern hemisphere, with zonal winds reaching 160 meters per second. The concentrations of several stratospheric organic compounds are enhanced at mid- and high northern latitudes, and the strong zonal winds may inhibit mixing between these latitudes and the rest of Titan. Above the south pole, temperatures in the stratosphere are 4 to 5 kelvin cooler than at the equator. The stratospheric mole fractions of methane and carbon monoxide are (1.6 +/- 0.5) x 10(-2) and (4.5 +/- 1.5) x 10(-5), respectively.
Assuntos
Hidrocarbonetos , Metano , Nitrilas , Saturno , Atmosfera , Monóxido de Carbono , Meio Ambiente Extraterreno , Astronave , Temperatura , VentoRESUMO
Stratospheric temperatures on Saturn imply a strong decay of the equatorial winds with altitude. If the decrease in winds reported from recent Hubble Space Telescope images is not a temporal change, then the features tracked must have been at least 130 kilometers higher than in earlier studies. Saturn's south polar stratosphere is warmer than predicted from simple radiative models. The C/H ratio on Saturn is seven times solar, twice Jupiter's. Saturn's ring temperatures have radial variations down to the smallest scale resolved (100 kilometers). Diurnal surface temperature variations on Phoebe suggest a more porous regolith than on the jovian satellites.
Assuntos
Saturno , Atmosfera , Carbono , Meio Ambiente Extraterreno , Hidrogênio , Metano , Astronave , Análise Espectral , Temperatura , VentoRESUMO
The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.