Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068651

RESUMO

Herpes simplex virus 1 (HSV-1) infects the host via epithelia and establishes latency in sensory neurons. The UL24 gene is conserved throughout the Herpesviridae family, and the UL24 protein is important for efficient viral replication and pathogenesis. Multiple transcripts are expressed from the UL24 gene. The presence of a transcription initiation site inside the open reading frame of UL24 and an ATG start codon in the same open reading frame led us to suspect that another protein was expressed from the UL24 locus. To test our hypothesis, we constructed a recombinant virus that expresses a hemagglutinin tag at the C terminus of UL24. Western blot analysis revealed the expression of an 18-kDa protein that is not a degradation product of the full-length UL24, which we refer to as UL24.5. Ectopically expressed UL24.5 did not induce the dispersal of nucleolar proteins, as seen for UL24. In order to characterize the role of UL24.5, we constructed a mutant virus encoding a substitution of the predicted initiation methionine to a valine. This substitution eliminated the expression of the 18-kDa polypeptide. Unlike the UL24-null mutant (UL24X), which exhibits reduced viral yields, the UL24.5-null mutant exhibited the same replication phenotype in cell culture as the parental strain. However, in a murine ocular infection model, we observed an increase in the incidence of neurological disorders with the UL24.5 mutant. Alignment of amino acid sequences for various herpesviruses revealed that the initiation site of UL24.5 is conserved among HSV-1 strains and is present in many herpesviruses.IMPORTANCE We discovered a new HSV-1 protein, UL24.5, which corresponds to the C-terminal portion of UL24. In contrast to the replication defects observed with HSV-1 strains that do not express full-length UL24, the absence of UL24.5 did not affect viral replication in cell culture. Moreover, in mice, the absence of UL24.5 did not affect viral titers in epithelia or trigeminal ganglia during acute infection; however, it was associated with a prolonged persistence of signs of inflammation. Strikingly, the absence of UL24.5 also led to an increase in the incidence of severe neurological impairment compared to results for wild-type control viruses. This increase in pathogenicity is in stark contrast to the reduction in clinical signs associated with the absence of full-length UL24. Bioinformatic analyses suggest that UL24.5 is conserved among all human alphaherpesviruses and in some nonhuman alphaherpesviruses. Thus, we have identified UL24.5 as a new HSV-1 determinant of pathogenesis.


Assuntos
Expressão Gênica , Herpesvirus Humano 1/patogenicidade , Ceratite Herpética/patologia , Mutação , Proteínas Virais/biossíntese , Proteínas Virais/genética , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Herpesvirus Humano 1/genética , Ceratite Herpética/virologia , Camundongos , Células Vero , Virulência , Replicação Viral
2.
J Gen Virol ; 96(9): 2794-2805, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25986633

RESUMO

Herpes simplex virus 1 (human herpesvirus 1) initially infects epithelial cells of the mucosa and then goes on to infect sensory neurons leading ultimately to a latent infection in trigeminal ganglia (TG). UL24 is a core herpesvirus gene that has been identified as a determinant of pathogenesis in several Alphaherpesvirinae, although the underlying mechanisms are unknown. In a mouse model of ocular infection, a UL24-deficient virus exhibited a reduction in viral titres in tear films of 1 log10, whilst titres in TG are often below the level of detection. Moreover, the efficiency of reactivation from latency was also severely reduced. Herein, we investigated how UL24 contributed to acute infection of TG. Our results comparing the impact of UL24 on viral titres in eye tissue versus in tear films did not reveal a general defect in virus release from the cornea. We also found that the impairment of replication seen in mouse primary embryonic neurons with a UL24-deficient virus was not more severe than that observed in an epithelial cell line. Rather, in situ histological analyses revealed that infection with a UL24-deficient virus led to a significant reduction in the number of acutely infected neurons at 3 days post-infection (p.i.). Moreover, there was a significant reduction in the number of neurons positive for viral DNA at 2 days p.i. for the UL24-deficient virus as compared with that observed for WT or a rescue virus. Our results supported a model whereby UL24 functions in the dissemination of acute infection from the cornea to neurons in TG.


Assuntos
Córnea/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Neurônios/virologia , Gânglio Trigeminal/virologia , Proteínas Virais/genética , Replicação Viral , Animais , Modelos Animais de Doenças , Herpesvirus Humano 1/genética , Humanos , Camundongos , Mutação , Gânglio Trigeminal/citologia , Proteínas Virais/metabolismo
3.
Virology ; 495: 148-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27214229

RESUMO

UL24 is conserved among all Herpesviridae. In herpes simplex virus 1 (HSV-1), UL24 mutations lead to reduced viral titers both in cell culture and in vivo, and reduced pathogenicity. The human cytomegalovirus ortholog of UL24 has a gene regulatory function; however, it is not known whether other UL24 orthologs also affect gene expression. We discovered that in co-transfection experiments, expression of UL24 correlated with a reduction in the expression of several viral proteins and transcripts. Substitution mutations targeting conserved residues in UL24 impaired this function. Reduced transcript levels did not appear attributable to changes in mRNA stability. The UL24 ortholog of Herpes B virus exhibited a similar activity. An HSV-1 mutant that does not express UL24 produced more viral R1 and R2 transcripts than the wild type or rescue virus relative to the amount of viral DNA. These results reveal a new role for HSV-1UL24 in regulating viral mRNA accumulation.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Expressão Gênica , Vetores Genéticos/genética , Herpes Simples/virologia , Humanos , Mutação , Estabilidade de RNA , Transcrição Gênica , Transfecção , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA