Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(34): 20423-20429, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778583

RESUMO

We develop a predictive theoretical model of the physical mechanisms that govern the heritability and maintenance of epigenetic modifications. This model focuses on a particular modification, methylation of lysine-9 of histone H3 (H3K9), which is one of the most representative and critical epigenetic marks that affects chromatin organization and gene expression. Our model combines the effect of segregation and compaction on chromosomal organization with the effect of the interaction between proteins that compact the chromatin (heterochromatin protein 1) and the methyltransferases that affect methyl spreading. Our chromatin model demonstrates that a block of H3K9 methylations in the epigenetic sequence determines the compaction state at any particular location in the chromatin. Using our predictive model for chromatin compaction, we develop a methylation model to address the reestablishment of the methylation sequence following DNA replication. Our model reliably maintains methylation over generations, thereby establishing the robustness of the epigenetic code.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Epigênese Genética , Histona Metiltransferases/metabolismo , Modelos Genéticos , Cromatina/metabolismo , Homólogo 5 da Proteína Cromobox , Humanos
2.
Biophys J ; 120(22): 4932-4943, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34687722

RESUMO

We examine the relationship between the size of domains of epigenetic marks and the stability of those domains using our theoretical model that captures the physical mechanisms governing the maintenance of epigenetic modifications. We focus our study on histone H3 lysine-9 trimethylation, one of the most common and consequential epigenetic marks with roles in chromatin compaction and gene repression. Our model combines the effects of methyl spreading by methyltransferases and chromatin segregation into heterochromatin and euchromatin because of preferential heterochromatin protein 1 (HP1) binding. Our model indicates that, although large methylated domains are passed successfully from one chromatin generation to the next, small alterations to the methylation sequence are not maintained during chromatin replication. Using our predictive model, we investigate the size required for an epigenetic domain to persist over chromatin generations while surrounded by a much larger domain of opposite methylation and compaction state. We find that there is a critical size threshold in the hundreds-of-nucleosomes scale above which an epigenetic domain will be reliably maintained over generations. The precise size of the threshold differs for heterochromatic and euchromatic domains. Our results are consistent with natural alterations to the epigenetic sequence occurring during embryonic development and due to age-related epigenetic drift.


Assuntos
Homólogo 5 da Proteína Cromobox , Epigênese Genética , Deriva Genética , Heterocromatina , Cromatina/genética , Heterocromatina/genética , Modelos Genéticos
3.
Biophys J ; 119(8): 1630-1639, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33010237

RESUMO

We present a theoretical model that demonstrates the integral role chromosome organization and structural mechanics play in the spreading of histone modifications involved in epigenetic regulation. Our model shows that heterogeneous nucleosome positioning, and the resulting position-dependent mechanical properties, must be included to reproduce several qualitative features of experimental data of histone methylation spreading around an artificially induced "nucleation site." We show that our model recreates both the extent of spreading and the presence of a subdominant peak upstream of the transcription start site. Our model indicates that the spreading of epigenetic modifications is sensitive to heterogeneity in chromatin organization and the resulting variability in the chromatin's mechanical properties, suggesting that nucleosome spacing can directly control the conferral of epigenetic marks by modifying the structural mechanics of the chromosome. It further illustrates how the physical organization of the DNA polymer may play a significant role in re-establishing the epigenetic code upon cell division.


Assuntos
Epigênese Genética , Nucleossomos , Animais , Cromatina , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Camundongos
4.
ACS Omega ; 8(24): 21871-21884, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37309388

RESUMO

Minimizing the human and economic costs of the COVID-19 pandemic and future pandemics requires the ability to develop and deploy effective treatments for novel pathogens as soon as possible after they emerge. To this end, we introduce a new computational pipeline for the rapid identification and characterization of binding sites in viral proteins along with the key chemical features, which we call chemotypes, of the compounds predicted to interact with those same sites. The composition of source organisms for the structural models associated with an individual binding site is used to assess the site's degree of structural conservation across different species, including other viruses and humans. We propose a search strategy for novel therapeutics that involves the selection of molecules preferentially containing the most structurally rich chemotypes identified by our algorithm. While we demonstrate the pipeline on SARS-CoV-2, it is generalizable to any new virus, as long as either experimentally solved structures for its proteins are available or sufficiently accurate predicted structures can be constructed.

5.
F1000Res ; 12: 1430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39291139

RESUMO

Background: Ensuring the validity of results from funded programs is a critical concern for agencies that sponsor biological research. In recent years, the open science movement has sought to promote reproducibility by encouraging sharing not only of finished manuscripts but also of data and code supporting their findings. While these innovations have lent support to third-party efforts to replicate calculations underlying key results in the scientific literature, fields of inquiry where privacy considerations or other sensitivities preclude the broad distribution of raw data or analysis may require a more targeted approach to promote the quality of research output. Methods: We describe efforts oriented toward this goal that were implemented in one human performance research program, Measuring Biological Aptitude, organized by the Defense Advanced Research Project Agency's Biological Technologies Office. Our team implemented a four-pronged independent verification and validation (IV&V) strategy including 1) a centralized data storage and exchange platform, 2) quality assurance and quality control (QA/QC) of data collection, 3) test and evaluation of performer models, and 4) an archival software and data repository. Results: Our IV&V plan was carried out with assistance from both the funding agency and participating teams of researchers. QA/QC of data acquisition aided in process improvement and the flagging of experimental errors. Holdout validation set tests provided an independent gauge of model performance. Conclusions: In circumstances that do not support a fully open approach to scientific criticism, standing up independent teams to cross-check and validate the results generated by primary investigators can be an important tool to promote reproducibility of results.


Assuntos
Controle de Qualidade , Humanos , Reprodutibilidade dos Testes , Software
6.
Viruses ; 14(12)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560780

RESUMO

Genetic analysis of intra-host viral populations provides unique insight into pre-emergent mutations that may contribute to the genotype of future variants. Clinical samples positive for SARS-CoV-2 collected in California during the first months of the pandemic were sequenced to define the dynamics of mutation emergence as the virus became established in the state. Deep sequencing of 90 nasopharyngeal samples showed that many mutations associated with the establishment of SARS-CoV-2 globally were present at varying frequencies in a majority of the samples, even those collected as the virus was first detected in the US. A subset of mutations that emerged months later in consensus sequences were detected as subconsensus members of intra-host populations. Spike mutations P681H, H655Y, and V1104L were detected prior to emergence in variant genotypes, mutations were detected at multiple positions within the furin cleavage site, and pre-emergent mutations were identified in the nucleocapsid and the envelope genes. Because many of the samples had a very high depth of coverage, a bioinformatics pipeline, "Mappgene", was established that uses both iVar and LoFreq variant calling to enable identification of very low-frequency variants. This enabled detection of a spike protein deletion present in many samples at low frequency and associated with a variant of concern.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2/genética , Mutação , Biologia Computacional , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA