Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 16(4): 045004, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877824

RESUMO

Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current-voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal-insulator-metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates. Activation required a forming step achieved through application of a bias voltage. Once activated, the nanoparticle films exhibited controllable resistive switching between multiple discrete low resistance states that depended on operational parameters including the applied bias voltage, temperature and sweep frequency. The films' resistance switching behavior is shown here to be the result of nanofilament formation due to formative electromigration effects. Because of their tunable and distinct resistance states, scalability and ease of fabrication, nanoparticle films have a potential place in memory technology as resistive random access memory cells.

2.
J Nanosci Nanotechnol ; 14(4): 2792-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24734692

RESUMO

Recent advances in nanoscale science and technology provide possibilities to directly self-assemble and integrate functional circuit elements within the wiring scheme of devices with potentially unique architectures. Electroionic resistive switching circuits comprising highly interconnected fractal electrodes and metal-insulator-metal interfaces, known as atomic switch networks, have been fabricated using simple benchtop techniques including solution-phase electroless deposition. These devices are shown to activate through a bias-induced forming step that produces the frequency dependent, nonlinear hysteretic switching expected for gapless-type atomic switches and memristors. By eliminating the need for complex lithographic methods, such an approach toward device fabrication provides a more accessible platform for the study of ionic resistive switches and memristive systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA