Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Ecol ; 33(1): e17190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909668

RESUMO

After the domestication of goats around 10,000 years before the present (BP), humans transported goats far beyond the range of their wild ancestor, the bezoar goat. This brought domestic goats into contact with many wild goat species such as ibex and markhor, enabling introgression between domestic and wild goats. To investigate this, while shedding light on the taxonomic status of wild and domestic goats, we analysed genome-wide SNP data of 613 specimens from 14 taxonomic units, including Capra hircus, C. pyrenaica, C. ibex (from Switzerland, Austria, Germany and Slovenia), C. aegagrus aegagrus, C. a. cretica, C. h. dorcas, C. caucasica caucasica, C. c. severtzovi, C. c. cylindricornis, C. falconeri, C. sibirica sibirica, C. s. alaiana and C. nubiana, as well as Oreamnos americanus (mountain goat) as an outgroup. To trace gene flow between domestic and wild goats, we integrated genotype data of local goat breeds from the Alps as well as from countries such as Spain, Greece, Türkiye, Egypt, Sudan, Iran, Russia (Caucasus and Altai) and Pakistan. Our phylogenetic analyses displayed a clear separation between bezoar-type and ibex-type clades with wild goats from the Greek islands of Crete and Youra clustered within domestic goats, confirming their feral origin. Our analyses also revealed gene flow between the lineages of Caucasian tur and domestic goats that most likely occurred before or during early domestication. Within the clade of domestic goats, analyses inferred gene flow between African and Iberian goats. The detected events of introgression were consistent with previous reports and offered interesting insights into the historical relationships among domestic and wild goats.


Assuntos
Bezoares , Animais , Humanos , Filogenia , Genótipo , Bezoares/genética , Cabras/genética , Genoma/genética
2.
Mol Ecol ; 30(24): 6701-6717, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534381

RESUMO

To predict species responses to anthropogenic disturbances and climate change, it is reasonable to use species with high sensitivity to such factors. Snow sheep (Ovis nivicola) could represent a good candidate for this; as the only large herbivore species adapted to the cold and alpine habitats of northeastern Siberia, it plays a crucial role in its ecosystem. Despite having an extensive geographical distribution among all ovine species, it is one of the least studied. In this study, we sequenced and analysed six genomes of snow sheep in combination with all other wild sheep species to infer key aspects of their evolutionary history and unveil the genetic basis of their adaptation to subarctic environments. Despite their large census population size, snow sheep genomes showed remarkably low heterozygosity, which could reflect the effect of isolation and historical bottlenecks that we inferred using the pairwise sequential Markovian coalescent and runs of homozygosity. F4 -statistics indicated instances of introgression involving snow sheep with argali (Ovis ammon) and Dall (Ovis dalli) sheep, suggesting that these species might have been more widespread during the Pleistocene. Furthermore, the introgressed segments, which were identified using mainly minimum relative node depth, covered genes associated with immunity, adipogenesis and morphology-related traits, representing potential targets of adaptive introgression. Genes related to mitochondrial functions and thermogenesis associated with adipose tissue were identified to be under selection. Overall, our data suggest introgression as a mechanism facilitating adaptation in wild sheep species and provide insights into the genetic mechanisms underlying cold adaptation in snow sheep.


Assuntos
Efeitos Antropogênicos , Ecossistema , Aclimatação/genética , Animais , Genoma , Ovinos/genética , Sequenciamento Completo do Genoma
3.
Mol Biol Evol ; 36(8): 1671-1685, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028398

RESUMO

Speciation through homoploid hybridization (HHS) is considered extremely rare in animals. This is mainly because the establishment of reproductive isolation as a product of hybridization is uncommon. Additionally, many traits are underpinned by polygeny and/or incomplete dominance, where the hybrid phenotype is an additive blend of parental characteristics. Phenotypically intermediate hybrids are usually at a fitness disadvantage compared with parental species and tend to vanish through backcrossing with parental population(s). It is therefore unknown whether the additive nature of hybrid traits in itself could lead successfully to HHS. Using a multi-marker genetic data set and a meta-analysis of diet and morphology, we investigated a potential case of HHS in the prions (Pachyptila spp.), seabirds distinguished by their bills, prey choice, and timing of breeding. Using approximate Bayesian computation, we show that the medium-billed Salvin's prion (Pachyptila salvini) could be a hybrid between the narrow-billed Antarctic prion (Pachyptila desolata) and broad-billed prion (Pachyptila vittata). Remarkably, P. salvini's intermediate bill width has given it a feeding advantage with respect to the other Pachyptila species, allowing it to consume a broader range of prey, potentially increasing its fitness. Available metadata showed that P. salvini is also intermediate in breeding phenology and, with no overlap in breeding times, it is effectively reproductively isolated from either parental species through allochrony. These results provide evidence for a case of HHS in nature, and show for the first time that additivity of divergent parental traits alone can lead directly to increased hybrid fitness and reproductive isolation.


Assuntos
Bico/anatomia & histologia , Aves/genética , Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Aves/anatomia & histologia , Dieta , Comportamento Alimentar
4.
Glob Chang Biol ; 23(4): 1425-1435, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27762483

RESUMO

Global warming is predicted to cause substantial habitat rearrangements, with the most severe effects expected to occur in high-latitude biomes. However, one major uncertainty is whether species will be able to shift their ranges to keep pace with climate-driven environmental changes. Many recent studies on mammals have shown that past range contractions have been associated with local extinctions rather than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how two common cold-adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus muta), respond to long-term climate warming. Contrary to previous findings in mammals, we demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back-casted species distribution models suggest that this continuity may have been facilitated by uninterrupted habitat availability and potentially also the greater dispersal ability of birds. However, our predictions show that in the near future, some isolated regions will have little suitable habitat left, implying a future decrease in local populations at a scale unprecedented since the last glacial maximum.


Assuntos
Aves/genética , Mudança Climática , DNA Antigo , Adaptação Fisiológica , Animais , Clima , Temperatura Baixa , Ecossistema , Europa (Continente)
5.
Mol Ecol ; 23(8): 2060-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24661631

RESUMO

The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice-free Scandinavian refugium.


Assuntos
Arvicolinae/genética , Evolução Biológica , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Fósseis , Variação Genética , Genética Populacional , Modelos Genéticos , Dados de Sequência Molecular , Noruega , Análise de Sequência de DNA
6.
Proc Natl Acad Sci U S A ; 108(46): 18626-30, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22065780

RESUMO

Archaeologists often argue whether Paleolithic works of art, cave paintings in particular, constitute reflections of the natural environment of humans at the time. They also debate the extent to which these paintings actually contain creative artistic expression, reflect the phenotypic variation of the surrounding environment, or focus on rare phenotypes. The famous paintings "The Dappled Horses of Pech-Merle," depicting spotted horses on the walls of a cave in Pech-Merle, France, date back ~25,000 y, but the coat pattern portrayed in these paintings is remarkably similar to a pattern known as "leopard" in modern horses. We have genotyped nine coat-color loci in 31 predomestic horses from Siberia, Eastern and Western Europe, and the Iberian Peninsula. Eighteen horses had bay coat color, seven were black, and six shared an allele associated with the leopard complex spotting (LP), representing the only spotted phenotype that has been discovered in wild, predomestic horses thus far. LP was detected in four Pleistocene and two Copper Age samples from Western and Eastern Europe, respectively. In contrast, this phenotype was absent from predomestic Siberian horses. Thus, all horse color phenotypes that seem to be distinguishable in cave paintings have now been found to exist in prehistoric horse populations, suggesting that cave paintings of this species represent remarkably realistic depictions of the animals shown. This finding lends support to hypotheses arguing that cave paintings might have contained less of a symbolic or transcendental connotation than often assumed.


Assuntos
Arqueologia/métodos , Cavalos/genética , Alelos , Animais , Europa (Continente) , França , Genótipo , Geografia , Heterozigoto , História Antiga , Cavalos/fisiologia , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Sibéria , Espanha
7.
Sci Adv ; 10(15): eadj0954, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608027

RESUMO

Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Asikli Höyük in Central Anatolia went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numerous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences (nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeological evidence of sheep management at Asikli Höyük which transitioned from residential stabling to open pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity throughout Asikli Höyük's occupation rather than a bottleneck. Instead, we detected a tenfold demographic bottleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep management into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern sheep populations.


Assuntos
Genoma Mitocondrial , Animais , Ovinos/genética , Filogenia , Carneiro Doméstico/genética , Turquia , África
8.
Plants (Basel) ; 12(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771638

RESUMO

Agricultural losses brought about by insect herbivores can be reduced by understanding the strategies that plants use against insect herbivores. The two main strategies that plants use against herbivory are resistance and tolerance. They are, however, predicted to be mutually exclusive, yet numerous populations have them both (hence a mixed defense strategy). This has been explained, among other alternatives, by the non-linear behavior of the costs and benefits of resistance and tolerance and their interaction with plants' mating system. Here, we studied how non-linearity and mating system affect the evolutionary stability of mixed defense strategies by means of agent-based model simulations. The simulations work on a novel model that was built upon previous ones. It incorporates resistance and tolerance costs and benefits, inbreeding depression, and a continuously scalable non-linearity. The factors that promoted the evolutionary stability of mixed defense strategies include a multiplicative allocation of costs and benefits of resistance and tolerance, a concave non-linearity, non-heritable selfing, and high tolerance costs. We also found new mechanisms, enabled by the mating system, that are worth considering for empirical studies. One was a double trade-off between resistance and tolerance, predicted as a consequence of costs duplication and the inducibility of tolerance, and the other was named the resistance-cost-of-selfing, a term coined by us, and was derived from the duplication of costs that homozygous individuals conveyed when a single resistance allele provided full protection.

9.
Proc Biol Sci ; 279(1747): 4568-73, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22977155

RESUMO

Previous studies have suggested that the presence of sea ice is an important factor in facilitating migration and determining the degree of genetic isolation among contemporary arctic fox populations. Because the extent of sea ice is dependent upon global temperatures, periods of significant cooling would have had a major impact on fox population connectivity and genetic variation. We tested this hypothesis by extracting and sequencing mitochondrial control region sequences from 17 arctic foxes excavated from two late-ninth-century to twelfth-century AD archaeological sites in northeast Iceland, both of which predate the Little Ice Age (approx. sixteenth to nineteenth century). Despite the fact that five haplotypes have been observed in modern Icelandic foxes, a single haplotype was shared among all of the ancient individuals. Results from simulations within an approximate Bayesian computation framework suggest that the rapid increase in Icelandic arctic fox haplotype diversity can only be explained by sea-ice-mediated fox immigration facilitated by the Little Ice Age.


Assuntos
Mudança Climática , Raposas/genética , Variação Genética , Animais , Sequência de Bases , Teorema de Bayes , DNA Mitocondrial/química , Feminino , Raposas/fisiologia , Islândia , Masculino , Dados de Sequência Molecular , Dinâmica Populacional
10.
Genet Res (Camb) ; 92(4): 309-20, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20943011

RESUMO

Analysis of the temporal variation in allele frequencies is useful for studying microevolutionary processes. However, many statistical methods routinely used to test temporal changes in allele frequencies fail to establish a proper hypothesis or have theoretical or practical limitations. Here, a Bayesian statistical test is proposed in which the distribution of the distances among sampling frequencies is approached with computer simulations, and hypergeometric sampling is considered instead of binomial sampling. To validate the test and compare its performance with other tests, agent-based model simulations were run for a variety of scenarios, and two real molecular databases were analysed. The results showed that the simulation test (ST) maintained the significance value used (α=0·05) for a vast combination of parameter values, whereas other tests were sensitive to the effect of genetic drift or binomial sampling. The differences between binomial and hypergeometric sampling were more complex than expected, and a novel effect was described. This study suggests that the ST is especially useful for studies with small populations and many alleles, as in microsatellite or sequencing molecular data.


Assuntos
Simulação por Computador , Interpretação Estatística de Dados , Frequência do Gene/genética , Genética Populacional , Repetições de Microssatélites/genética , Algoritmos , Análise de Variância , Animais , Teorema de Bayes , Bulinus/genética , Deriva Genética , Cavalos/genética , Modelos Genéticos , Fatores de Tempo
11.
Genes (Basel) ; 11(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545389

RESUMO

Although the European roe deer (Capreolus capreolus) population of North-West Germany has a remarkable number of melanistic specimens between 10% and 25%, the underlying genetic mutation-causing melanism is still unknown. We used a gene targeting approach focusing on MC1R and ASIP as important genes of coat coloration. Overall, 1384 bp of MC1R and 2039 bp of ASIP were sequenced in 24 specimens and several SNPs were detected. But only the ASIP-SNP c.33G>T completely segregated both phenotypes leading to the amino acid substitution p.Leu11Phe. The SNP was further evaluated in additional 471 samples. Generally, all black specimens (n = 33) were homozygous TT, whereas chestnut individuals were either homozygote GG (n = 436) or heterozygote GT (n = 26). Considering the fact that all melanistic animals shared two mutated alleles of the strongly associated SNP, we concluded that melanism is inherited in a recessive mode in European roe deer.


Assuntos
Proteína Agouti Sinalizadora/genética , Cervos/genética , Cor de Cabelo/genética , Melanose/genética , Alelos , Animais , Genótipo , Alemanha Ocidental , Humanos , Melanose/metabolismo , Mutação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 1 de Melanocortina/genética
13.
Sci Rep ; 8(1): 6551, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695730

RESUMO

Species and populations are disappearing at an alarming rate as a direct result of human activities. Loss of genetic diversity associated with population decline directly impacts species' long-term survival. Therefore, preserving genetic diversity is of considerable conservation importance. However, to assist in conservation efforts, it is important to understand how genetic diversity is spatially distributed and how it changes due to anthropogenic pressures. In this study, we use historical museum and modern faecal samples of two critically endangered eastern gorilla taxa, Grauer's (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei beringei), to directly infer temporal changes in genetic diversity within the last century. Using over 100 complete mitochondrial genomes, we observe a significant decline in haplotype and nucleotide diversity in Grauer's gorillas. By including historical samples from now extinct populations we show that this decline can be attributed to the loss of peripheral populations rather than a decrease in genetic diversity within the core range of the species. By directly quantifying genetic changes in the recent past, our study shows that human activities have severely impacted eastern gorilla genetic diversity within only four to five generations. This rapid loss calls for dedicated conservation actions, which should include preservation of the remaining peripheral populations.


Assuntos
Variação Genética/genética , Gorilla gorilla/genética , Mitocôndrias/genética , Animais , Genoma Mitocondrial/genética , Haplótipos/genética
14.
Sci Adv ; 4(4): eaap9691, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29675468

RESUMO

Present-day domestic horses are immensely diverse in their maternally inherited mitochondrial DNA, yet they show very little variation on their paternally inherited Y chromosome. Although it has recently been shown that Y chromosomal diversity in domestic horses was higher at least until the Iron Age, when and why this diversity disappeared remain controversial questions. We genotyped 16 recently discovered Y chromosomal single-nucleotide polymorphisms in 96 ancient Eurasian stallions spanning the early domestication stages (Copper and Bronze Age) to the Middle Ages. Using this Y chromosomal time series, which covers nearly the entire history of horse domestication, we reveal how Y chromosomal diversity changed over time. Our results also show that the lack of multiple stallion lineages in the extant domestic population is caused by neither a founder effect nor random demographic effects but instead is the result of artificial selection-initially during the Iron Age by nomadic people from the Eurasian steppes and later during the Roman period. Moreover, the modern domestic haplotype probably derived from another, already advantageous, haplotype, most likely after the beginning of the domestication. In line with recent findings indicating that the Przewalski and domestic horse lineages remained connected by gene flow after they diverged about 45,000 years ago, we present evidence for Y chromosomal introgression of Przewalski horses into the gene pool of European domestic horses at least until medieval times.


Assuntos
Animais Domésticos , Variação Genética , Cavalos/genética , Animais , DNA Mitocondrial , Domesticação , Europa (Continente) , Evolução Molecular , Ligação Genética , Loci Gênicos , Marcadores Genéticos , Geografia , Haplótipos , Cavalos/classificação , Seleção Genética , Cromossomo Y
15.
Nat Ecol Evol ; 1(12): 1816-1819, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29085065

RESUMO

Wild horses unexpectedly survived terminal Pleistocene megafaunal extinctions until eventual European extirpation in the twentieth century. This survival is tied to either their occurrence in cryptic open habitats or their adaptation to forests. Our niche modelling inferred an increasing presence of horses in post-glacial forests, and our analysis of ancient DNA suggested significant selection for black phenotypes as indicating adaptation to forests.


Assuntos
Cor , Ecossistema , Cavalos/fisiologia , Pigmentação , Adaptação Biológica , Pelo Animal/química , Animais , Paleontologia
16.
Front Microbiol ; 8: 2478, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326663

RESUMO

The milpa is a traditional maize-based polyculture in Mexico that is typically practiced as rainfed agriculture. Because milpa cultivation has been practiced over a vast range of environmental and cultural conditions, this agroecosystem is recognized as an important repository of biological and cultural diversity. As for any agroecosystem, the relationship between plant development and the biogeochemical processes of the soil is critical. Although the milpa has been studied from different perspectives, the diversity and structure of microbial communities within milpa soils remain largely unexplored. In this study, we surveyed a milpa system in Central Mexico across cropping season: before planting (dry season; t1), during the early growth of plants (onset of the rainy season; t2), and before harvest (end of the rainy season; t3). In order to examine changes in community structure through time, we characterized bacterial diversity through high-throughput sequencing of 16S rRNA gene amplicons and recorded the nutrient status of multiple (5-10) soil samples from our milpa plots. We estimated microbial diversity from a total of 90 samples and constructed co-occurrence networks. Although we did not find significant changes in diversity or composition of bacterial communities across time, we identified significant rearrangements in their co-occurrence network structure. We found particularly drastic changes between the first and second time points. Co-occurrence analyses showed that the bacterial community changed from a less structured network at (t1) into modules with a non-random composition of taxonomic groups at (t2). We conclude that changes in bacterial communities undetected by standard diversity analyses can become evident when performing co-occurrence network analyses. We also postulate possible functional associations among keystone groups suggested by biogeochemical processes. This study represents the first contribution on soil microbial diversity of a maize-based polyculture and shows its dynamic nature in short-term scales.

17.
Sci Rep ; 6: 38548, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924839

RESUMO

Horses have been valued for their diversity of coat colour since prehistoric times; this is especially the case since their domestication in the Caspian steppe in ~3,500 BC. Although we can assume that human preferences were not constant, we have only anecdotal information about how domestic horses were influenced by humans. Our results from genotype analyses show a significant increase in spotted coats in early domestic horses (Copper Age to Iron Age). In contrast, medieval horses carried significantly fewer alleles for these phenotypes, whereas solid phenotypes (i.e., chestnut) became dominant. This shift may have been supported because of (i) pleiotropic disadvantages, (ii) a reduced need to separate domestic horses from their wild counterparts, (iii) a lower religious prestige, or (iv) novel developments in weaponry. These scenarios may have acted alone or in combination. However, the dominance of chestnut is a remarkable feature of the medieval horse population.


Assuntos
Cavalos/fisiologia , Pigmentação , Animais , Simulação por Computador , DNA Antigo/análise , Método de Monte Carlo , Fenótipo , Fatores de Tempo
18.
Curr Biol ; 26(15): R697-R699, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505236

RESUMO

Horseback riding is the most fundamental use of domestic horses and has had a huge influence on the development of human societies for millennia. Over time, riding techniques and the style of riding improved. Therefore, horses with the ability to perform comfortable gaits (e.g. ambling or pacing), so-called 'gaited' horses, have been highly valued by humans, especially for long distance travel. Recently, the causative mutation for gaitedness in horses has been linked to a substitution causing a premature stop codon in the DMRT3 gene (DMRT3_Ser301STOP) [1]. In mice, Dmrt3 is expressed in spinal cord interneurons and plays an important role in the development of limb movement coordination [1]. Genotyping the position in 4396 modern horses from 141 breeds revealed that nowadays the mutated allele is distributed worldwide with an especially high frequency in gaited horses and breeds used for harness racing [2]. Here, we examine historic horse remains for the DMRT3 SNP, tracking the origin of gaitedness to Medieval England between 850 and 900 AD. The presence of the corresponding allele in Icelandic horses (9(th)-11(th) century) strongly suggests that ambling horses were brought from the British Isles to Iceland by Norse people. Considering the high frequency of the ambling allele in early Icelandic horses, we believe that Norse settlers selected for this comfortable mode of horse riding soon after arrival. The absence of the allele in samples from continental Europe (including Scandinavia) at this time implies that ambling horses may have spread from Iceland and maybe also the British Isles across the continent at a later date.


Assuntos
Marcha/genética , Cavalos/fisiologia , Fatores de Transcrição/história , Animais , Análise Mutacional de DNA , DNA Antigo/análise , Inglaterra , Frequência do Gene , Genótipo , História Medieval , Cavalos/genética , Islândia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Philos Trans R Soc Lond B Biol Sci ; 370(1660): 20130386, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25487337

RESUMO

Leopard complex spotting is inherited by the incompletely dominant locus, LP, which also causes congenital stationary night blindness in homozygous horses. We investigated an associated single nucleotide polymorphism in the TRPM1 gene in 96 archaeological bones from 31 localities from Late Pleistocene (approx. 17 000 YBP) to medieval times. The first genetic evidence of LP spotting in Europe dates back to the Pleistocene. We tested for temporal changes in the LP associated allele frequency and estimated coefficients of selection by means of approximate Bayesian computation analyses. Our results show that at least some of the observed frequency changes are congruent with shifts in artificial selection pressure for the leopard complex spotting phenotype. In early domestic horses from Kirklareli-Kanligecit (Turkey) dating to 2700-2200 BC, a remarkably high number of leopard spotted horses (six of 10 individuals) was detected including one adult homozygote. However, LP seems to have largely disappeared during the late Bronze Age, suggesting selection against this phenotype in early domestic horses. During the Iron Age, LP reappeared, probably by reintroduction into the domestic gene pool from wild animals. This picture of alternating selective regimes might explain how genetic diversity was maintained in domestic animals despite selection for specific traits at different times.


Assuntos
Oftalmopatias Hereditárias/veterinária , Doenças Genéticas Ligadas ao Cromossomo X/veterinária , Variação Genética , Cor de Cabelo/genética , Doenças dos Cavalos/genética , Doenças dos Cavalos/história , Miopia/veterinária , Cegueira Noturna/veterinária , Seleção Genética , Canais de Cátion TRPM/genética , Animais , Sequência de Bases , Teorema de Bayes , DNA/genética , DNA/história , Análise Mutacional de DNA/veterinária , Primers do DNA/genética , Europa (Continente) , Oftalmopatias Hereditárias/genética , Fósseis , Frequência do Gene , Doenças Genéticas Ligadas ao Cromossomo X/genética , História Antiga , História Medieval , Cavalos , Dados de Sequência Molecular , Miopia/genética , Cegueira Noturna/genética , Polimorfismo de Nucleotídeo Único/genética
20.
PeerJ ; 3: e1411, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26644970

RESUMO

Defensive traits exhibited by plants vary widely across populations. Heritable phenotypic differentiation is likely to be produced by genetic drift and spatially restricted gene flow between populations. However, spatially variable selection exerted by herbivores may also give rise to differences among populations. To explore to what extent these factors promote the among-population differentiation of plant resistance of 13 populations of Datura stramonium, we compared the degree of phenotypic differentiation (P ST) of leaf resistance traits (trichome density, atropine and scopolamine concentration) against neutral genetic differentiation (F ST) at microsatellite loci. Results showed that phenotypic differentiation in defensive traits among-population is not consistent with divergence promoted by genetic drift and restricted gene flow alone. Phenotypic differentiation in scopolamine concentration was significantly higher than F ST across the range of trait heritability values. In contrast, genetic differentiation in trichome density was different from F ST only when heritability was very low. On the other hand, differentiation in atropine concentration differed from the neutral expectation when heritability was less than or equal to 0.3. In addition, we did not find a significant correlation between pair-wise neutral genetic distances and distances of phenotypic resistance traits. Our findings reinforce previous evidence that divergent natural selection exerted by herbivores has promoted the among-population phenotypic differentiation of defensive traits in D. stramonium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA