RESUMO
BACKGROUND: Previously, we had shown that persons infected with human T-cell lymphoma leukemia virus 1 or 2 (HTLV-1 or 2) had an increased prevalence of antibodies to a peptide in the Pol protein of the retrovirus HERV-K10, homologous to a peptide in HTLV gp21 envelope protein. The prevalence rate was higher in those with myelopathy vs. non-myelopathy. We have now extended our observations to a cohort restricted to North America in whom the diagnosis of HTLV myelopathy was rigorously confirmed to also test for reactivity to another HERV-K10 peptide homologous to the HTLV p24 Gag protein. METHODS: Sera from 100 volunteer blood donors (VBD), 53 patients with large granular lymphocytic leukemia (LGLL), 74 subjects with HTLV-1 or 2 infection (58 non-myelopathy and 16 myelopathy) and 83 patients with multiple sclerosis (MS) were evaluated in ELISA assays using the above peptides. RESULTS: The HTLV myelopathy patients had a statistically significant increased prevalence of antibodies to both HERV-K10 peptides (87.5%) vs. the VBD (0%), LGLL patients (0%), MS patients (4.8%), and the HTLV positive non-myelopathy subjects (5.2%). CONCLUSION: The data suggest that immuno-cross-reactivity to HERV-K10 peptides and/or transactivation of HERV-K10 expression by the HTLV Tax protein may be involved in the pathogenesis of HTLV-associated myelopathy/tropical spastic paraparesis and spastic ataxia.
Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Retrovirus Endógenos/imunologia , Produtos do Gene gag/imunologia , Infecções por HTLV-I/complicações , Infecções por HTLV-II/complicações , Doenças da Medula Espinal/patologia , Estudos de Coortes , Reações Cruzadas , Infecções por HTLV-I/patologia , Infecções por HTLV-II/patologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 2 Humano/imunologia , Humanos , América do NorteRESUMO
Previously, we had shown that although only 8% of patients with large granular lymphocytic leukemia (LGLL) were infected with human T cell lymphoma/leukemia virus (HTLV)-2, almost half had antibodies to HTLV Gag and Env peptides. Herein, we investigated whether this could be due to cross-reactive antibodies to two homologous peptides in the Gag protein of the endogenous retrovirus HTLV-related endogenous sequence-1 (HRES-1). In addition, we had previously shown that patients with HTLV neurodegenerative diseases had increased seroreactivity to homologous HERV-K10 endogenous retrovirus peptides. Hence, in this study we also examined whether these patients had increased seroreactivity to the aforementioned HRES-1 Gag peptides. Sera from 100 volunteer blood donors (VBD), 53 patients with LGLL, 74 subjects with HTLV-1 or 2 infection (58 nonmyelopathy and 16 myelopathy), and 83 patients with multiple sclerosis (MS) were evaluated. The HTLV-positive myelopathy (HAM) patients had a statistically increased prevalence of antibodies to both HRES-1 Gag peptides (81%) vs. the VBD (0%), LGLL patients (13%), and MS patients (1%), and the HTLV-positive nonmyelopathy subjects (21%). The data suggest that cross-reactivity to HRES-1 peptides could be involved in the pathogenesis of HAM. The difference between the VBD and LGLL patients was also statistically significant, also suggesting a possible association in a minority of patients.
Assuntos
Anticorpos Antivirais/sangue , Retrovirus Endógenos/imunologia , Produtos do Gene gag/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Paraparesia Espástica Tropical/imunologia , Proteínas dos Retroviridae/imunologia , Doadores de Sangue , Reações Cruzadas , DNA Viral/química , DNA Viral/genética , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
The primate T-cell lymphoma viruses (PTLV) are divided into six distinct species. The biology and epidemiology of PTLV-1 and PTLV-2 are very well understood. However, that of PTLV-3, 4, 5, and 6 are not. Recently, in Cameroon, three and one humans were shown to be infected with HTLV-3 and HTLV-4, respectively. We undertook a study to ascertain whether any of these two retroviruses were present in the peripheral blood mononuclear cell DNA of New York State subjects deemed at risk for PTLV infection. Samples were analyzed by PTLV-3 and PTLV-4 specific PCR assays from the following human and simian subject types: African-American medical clinic patients; HTLV EIA+, WB indeterminate blood donors; intravenous drug users; patients with leukemia, lymphoma, myelopathy, polymyositis, or AIDS; and African chimpanzees. None of the 1200 subjects was positive for HTLV-3 or 4. The data indicate that, at the time of sample collection, no evidence exists for the dissemination of HTLV-3 or 4 to New York State. Continued epidemiological studies are warranted to explore the worldwide prevalence rates and dissemination patterns of HTLV-3 and 4 infections, and their possible disease associations.