Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Environ Res ; 215(Pt 1): 114045, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995227

RESUMO

Photosynthetic microbial fuel cells (pMFC) represent a promising approach for treating methanol (CH3OH) wastewater. However, their use is constrained by a lack of knowledge on the extracellular electron transfer capabilities of photosynthetic methylotrophs, especially when coupled with metal electrodes. This study assessed the CH3OH oxidation capabilities of Rhodobacter sphaeroides 2.4.1 in two-compartment pMFCs. A 3D nickel (Ni) foam modified with plasma-grown graphene (Gr) was used as an anode, nitrate mineral salts media (NMS) supplemented with 0.1% CH3OH as anolyte, carbon brush as cathode, and 50 mM ferricyanide as catholyte. Two simultaneous pMFCs that used bare Ni foam and carbon felt served as controls. The Ni/Gr electrode registered a two-fold lower charge transfer resistance (0.005 kΩ cm2) and correspondingly 16-fold higher power density (141 mW/m2) compared to controls. The underlying reasons for the enhanced performance of R. sphaeroides at the graphene interface were discerned. The real-time polymerase chain reaction (PCR) analysis revealed the upregulation of cytochrome c oxidase, aa3 type, subunit I gene, and Flp pilus assembly protein genes in the sessile cells compared to their planktonic counterparts. The key EET pathways used for sustaining CH3OH oxidation were discussed.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Carbono , Fibra de Carbono , Eletrodos , Complexo IV da Cadeia de Transporte de Elétrons , Ferricianetos , Metanol , Níquel , Nitratos , Sais , Águas Residuárias
2.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163324

RESUMO

Copper (Cu) is an essential micronutrient required as a co-factor in the catalytic center of many enzymes. However, excess Cu can generate pleiotropic effects in the microbial cell. In addition, leaching of Cu from pipelines results in elevated Cu concentration in the environment, which is of public health concern. Sulfate-reducing bacteria (SRB) have been demonstrated to grow in toxic levels of Cu. However, reports on Cu toxicity towards SRB have primarily focused on the degree of toxicity and subsequent elimination. Here, Cu(II) stress-related effects on a model SRB, Desulfovibrio alaskensis G20, is reported. Cu(II) stress effects were assessed as alterations in the transcriptome through RNA-Seq at varying Cu(II) concentrations (5 µM and 15 µM). In the pairwise comparison of control vs. 5 µM Cu(II), 61.43% of genes were downregulated, and 38.57% were upregulated. In control vs. 15 µM Cu(II), 49.51% of genes were downregulated, and 50.5% were upregulated. The results indicated that the expression of inorganic ion transporters and translation machinery was massively modulated. Moreover, changes in the expression of critical biological processes such as DNA transcription and signal transduction were observed at high Cu(II) concentrations. These results will help us better understand the Cu(II) stress-response mechanism and provide avenues for future research.


Assuntos
Cobre/farmacologia , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sulfatos/farmacologia , Transcriptoma/efeitos dos fármacos , Proteínas de Bactérias/genética , Fenômenos Biológicos/genética , Transcriptoma/genética
3.
Biometals ; 34(5): 1043-1058, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34213670

RESUMO

In the present study, native bacterial strains isolated from abandoned gold mine and Chromobacterium violaceum (MTCC-2656) were applied for bioleaching of metals from waste printed circuit boards (WPCBs). Toxicity assessment and dose-response analysis of WPCBs showed EC50 values of 128.9, 98.7, and 90.8 g/L for Bacillus sp. SAG3, Bacillus megaterium SAG1 and Lysinibacillus sphaericus SAG2, respectively, whereas, for C. violaceum EC50 was 83.70 g/L. This indicates the viable operation range and technological feasibility of metals bioleaching from WPCBs using mine isolates. The influencing factors such as pH, pulp density, temperature, and precursor molecule (glycine) were optimized by one-factor at a time method (OFAT). The maximum metal recovery occurred at an initial pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C and a glycine concentration of 5 g/L, except for L. sphaericus which showed optimum activity at initial pH of 8.0. Under optimal conditions the metals recovery of Cu and Au from WPCBs were recorded as 87.5 ± 8% and 73.6 ± 3% for C. violaceum and 72.7 ± 5% and 66.6 ± 6% for B. megaterium, respectively. Kinetic modeling results showed that the data was best described by first order reaction kinetics, where the rate of metal solubilization from WPCBs depended upon microbial lixiviant production. This is the first report on bioleaching of metals from e-waste using bacterial isolates from the gold mine of Solan, HP. Our study demonstrated the potential of bioleaching for resource recovery from WPCBs dust, aimed to be disposed at landfills, and its effectiveness in extraction of elements those are at high supply risk and demand.


Assuntos
Resíduo Eletrônico , Ouro , Cinética , Temperatura
4.
Protein Expr Purif ; 164: 105464, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31376486

RESUMO

Xylanases (EC 3.2.1.8) are essential enzymes due to their applications in various industries such as textile, animal feed, paper and pulp, and biofuel industries. Halo-thermophilic Rhodothermaceae bacterium RA was previously isolated from a hot spring in Malaysia. Genomic analysis revealed that this bacterium is likely to be a new genus of the family Rhodothermaceae. In this study, a xylanase gene (1140 bp) that encoded 379 amino acids from the bacterium was cloned and expressed in Escherichia coli BL21(DE3). Based on InterProScan, this enzyme XynRA1 contained a GH10 domain and a signal peptide sequence. XynRA1 shared low similarity with the currently known xylanases (the closest is 57.2-65.4% to Gemmatimonadetes spp.). The purified XynRA1 achieved maximum activity at pH 8 and 60 °C. The protein molecular weight was 43.1 kDa XynRA1 exhibited an activity half-life (t1/2) of 1 h at 60 °C and remained stable at 50 °C throughout the experiment. However, it was NaCl intolerant, and various types of salt reduced the activity. This enzyme effectively hydrolyzed xylan (beechwood, oat spelt, and Palmaria palmata) and xylodextrin (xylotriose, xylotetraose, xylopentaose, and xylohexaose) to produce predominantly xylobiose. This xylanase is the first functionally characterized enzyme from the bacterium, and this work broadens the knowledge of GH10 xylanases.


Assuntos
Proteínas de Bactérias/genética , Endo-1,4-beta-Xilanases/genética , Rhodothermus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos/genética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rhodothermus/química , Rhodothermus/isolamento & purificação , Rhodothermus/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
5.
Appl Microbiol Biotechnol ; 102(4): 1869-1887, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305694

RESUMO

We have characterized a broad collection of extremophilic bacterial isolates from a deep subsurface mine, compost dumping sites, and several hot spring ecosystems. Spore-forming strains isolated from these environments comprised both obligate thermophiles/thermotolerant species (growing at > 55 °C; 240 strains) and mesophiles (growing at 15 to 40 °C; 12 strains). An overwhelming abundance of Geobacillus (81.3%) and Bacillus (18.3%) species was observed among the tested isolates. 16S rRNA sequence analysis documented the presence of 24 species among these isolates, but the 16S rRNA gene was shown to possess insufficient resolution to reliably discern Geobacillus phylogeny. gyrB-based phylogenetic analyses of nine strains revealed the presence of six known Geobacillus and one novel species. Multilocus sequence typing analyses based on seven different housekeeping genes deduced from whole genome sequencing of nine strains revealed the presence of three novel Geobacillus species. The vegetative cells of 41 Geobacillus strains were exposed to UVC254, and most (34 strains) survived 120 J/m2, while seven strains survived 300 J/m2, and cells of only one Geobacillus strain isolated from a compost facility survived 600 J/m2. Additionally, the UVC254 inactivation kinetics of spores from four Geobacillus strains isolated from three distinct geographical regions were evaluated and compared to that of a spacecraft assembly facility (SAF) clean room Geobacillus strain. The purified spores of the thermophilic SAF strain exhibited resistance to 2000 J/m2, whereas spores of two environmental Geobacillus strains showed resistance to 1000 J/m2. This study is the first to investigate UV resistance of environmental, obligately thermophilic Geobacillus strains, and also lays the foundation for advanced understanding of necessary sterilization protocols practiced in food, medical, pharmaceutical, and aerospace industries.


Assuntos
Ambientes Extremos , Geobacillus/isolamento & purificação , Viabilidade Microbiana/efeitos da radiação , Microbiologia do Solo , Raios Ultravioleta , Microbiologia da Água , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Análise por Conglomerados , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Geobacillus/classificação , Geobacillus/genética , Geobacillus/efeitos da radiação , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
6.
Biometals ; 29(6): 965-980, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27623995

RESUMO

This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas in the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 µm filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites.


Assuntos
Desulfovibrio/metabolismo , Nanopartículas/química , Urânio/química , Bicarbonatos/química , Soluções Tampão , Desulfovibrio/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Oxirredução
7.
BMC Biotechnol ; 14: 963, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25532585

RESUMO

BACKGROUND: Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and ß-xylosidase. ß-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose. Thermostable ß-xylosidases have been a focus of attention as industrially important enzymes due to their long shelf life and role in the relief of end-product inhibition of xylanases caused by xylo-oligosaccharides. Therefore, a highly thermostable ß-xylosidase with high specific activity has significant potential in lignocellulose bioconversion. RESULTS: A gene encoding a highly thermostable GH39 ß-xylosidase was cloned from Geobacillus sp. strain WSUCF1 and expressed in Escherichia coli. Recombinant ß-xylosidase was active over a wide range of temperatures and pH with optimum temperature of 70 °C and pH 6.5. It exhibited very high thermostability, retaining 50% activity at 70 °C after 9 days. WSUCF1 ß-xylosidase is more thermostable than ß-xylosidases reported from other thermophiles (growth temperature ≤ 70 °C). Specific activity was 133 U/mg when incubated with p-nitrophenyl xylopyranoside, with Km and Vmax values of 2.38 mM and 147 U/mg, respectively. SDS-PAGE analysis indicated that the recombinant enzyme had a mass of 58 kDa, but omitting heating prior to electrophoresis increased the apparent mass to 230 kDa, suggesting the enzyme exists as a tetramer. Enzyme exhibited high tolerance to xylose, retained approximately 70% of relative activity at 210 mM xylose concentration. Thin layer chromatography showed that the enzyme had potential to convert xylo-oligomers (xylobiose, triose, tetraose, and pentaose) into fermentable xylose. WSUCF1 ß-xylosidase along with WSUCF1 endo-xylanase synergistically converted the xylan into fermentable xylose with more than 90% conversion. CONCLUSIONS: Properties of the WSUCF1 ß-xylosidase i.e. high tolerance to elevated temperatures, high specific activity, conversion of xylo-oligomers to xylose, and resistance to inhibition from xylose, make this enzyme potentially suitable for various biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , Xilosidases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Geobacillus/química , Geobacillus/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Lignina/metabolismo , Peso Molecular , Xilose/metabolismo , Xilosidases/genética , Xilosidases/metabolismo
8.
Microorganisms ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792789

RESUMO

Noncoding RNAs (ncRNAs) play key roles in the regulation of important pathways, including cellular growth, stress management, signaling, and biofilm formation. Sulfate-reducing bacteria (SRB) contribute to huge economic losses causing microbial-induced corrosion through biofilms on metal surfaces. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation. This study aimed to identify ncRNAs in the genome of a model SRB, Oleidesulfovibrio alaskensis G20 (OA G20). Three in silico approaches revealed genome-wide distribution of 37 ncRNAs excluding tRNAs in the OA G20. These ncRNAs belonged to 18 different Rfam families. This study identified riboswitches, sRNAs, RNP, and SRP. The analysis revealed that these ncRNAs could play key roles in the regulation of several pathways of biosynthesis and transport involved in biofilm formation by OA G20. Three sRNAs, Pseudomonas P10, Hammerhead type II, and sX4, which were found in OA G20, are rare and their roles have not been determined in SRB. These results suggest that applying various computational methods could enrich the results and lead to the discovery of additional novel ncRNAs, which could lead to understanding the "rules of life of OA G20" during biofilm formation.

9.
mSystems ; 9(6): e0024824, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38695578

RESUMO

A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE: Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.


Assuntos
Genoma Bacteriano , Filogenia , Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , Glioxilatos/metabolismo , Genômica , Evolução Molecular , Serina/metabolismo , Serina/genética , Acil Coenzima A/metabolismo , Acil Coenzima A/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metano/metabolismo
10.
Sci Rep ; 14(1): 477, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177218

RESUMO

The phase changes of soil water or porous media have a crucial influence on the performance of natural and man-made infrastructures in cold regions. While various methods have been explored to address the impacts of frost-action arising from these phase changes, conventional approaches often rely on chemicals, mechanical techniques, and the reuse of waste materials, which often exhibit certain limitations and environmental concerns. In contrast, certain organisms produce ice-binding proteins (IBPs) or antifreeze proteins (AFPs) to adapt to low temperatures, which can inhibit ice crystal growth by lowering the freezing point and preventing ice crystallization without the need for external intervention. This study explores the potential of three psychrophilic microbes: Sporosarcina psychrophile, Sporosarcina globispora, and Polaromonas hydrogenivorans, to induce non-equilibrium freezing point depression and thermal hysteresis in order to control ice lens growth in frost-susceptible soils. We hypothesize that the AFPs produced by psychrophiles will alter the phase changes of porous media in frost-susceptible soils. The growth profiles of the microbes, the concentration of released proteins in the extracellular solution, and the thermal properties of the protein-mixed soils are monitored at an interval of three days. The controlled soil showed a freezing point of - 4.59 °C and thermal hysteresis of 4.62 °C, whereas protein-treated soil showed a maximum freezing point depression of - 8.54 °C and thermal hysteresis of 7.71 °C. Interestingly, except for the controlled sample, all the protein-treated soil samples were thawed at a negative temperature (minimum recorded at - 0.85 °C). Further analysis showed that the treated soils compared to porous media mixed soil freeze (1.25 °C vs. 0.51 °C) and thaw (2.75 °C vs. 1.72 °C) at extensive temperature gap. This freezing and thawing temperature gap is the temperature difference between the beginning of ice core formation and completed frozen, and the beginning of ice core thawing and completed thawed for the treated soil samples selected from different incubation days. Overall, this study presents a novel bio-mediated approach using psychrophilic microbes to control ice formation in frost-susceptible soils.


Assuntos
Solo , Água , Humanos , Congelamento , Temperatura Baixa , Proteínas Anticongelantes/química
11.
Front Microbiol ; 15: 1377965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628868

RESUMO

In the present study, a thermophilic strain designated CamBx3 was isolated from the Campanario hot spring, Chile. Based on 16S rRNA gene sequence, phylogenomic, and average nucleotide identity analysis the strain CamBx3 was identified as Bacillus paralicheniformis. Genome analysis of B. paralicheniformis CamBx3 revealed the presence of genes related to heat tolerance, exopolysaccharides (EPS), dissimilatory nitrate reduction, and assimilatory sulfate reduction. The pangenome analysis of strain CamBx3 with eight Bacillus spp. resulted in 26,562 gene clusters, 7,002 shell genes, and 19,484 cloud genes. The EPS produced by B. paralicheniformis CamBx3 was extracted, partially purified, and evaluated for its functional activities. B. paralicheniformis CamBx3 EPS with concentration 5 mg mL-1 showed an optimum 92 mM ferrous equivalent FRAP activity, while the same concentration showed a maximum 91% of Fe2+ chelating activity. B. paralicheniformis CamBx3 EPS (0.2 mg mL-1) demonstrated ß-glucosidase inhibition. The EPS formed a viscoelastic gel at 45°C with a maximum instantaneous viscosity of 315 Pa.s at acidic pH 5. The present study suggests that B. paralicheniformis CamBx3 could be a valuable resource for biopolymers and bioactive molecules for industrial applications.

12.
Int J Biol Macromol ; 257(Pt 2): 128679, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072346

RESUMO

The glycoside hydrolase family 39 (GH39) proteins are renowned for their extremophilic and multifunctional enzymatic properties, yet the molecular mechanisms underpinning these unique characteristics continue to be an active subject of research. In this study, we introduce WsuXyn, a GH39 protein with a molecular weight of 58 kDa, originating from the thermophilic Geobacillus sp. WSUCF1. Previously reported for its exceptional thermostable ß-xylosidase activity, WsuXyn has recently demonstrated a significant endoxylanase activity (3752 U·mg-1) against beechwood xylan, indicating towards its bifunctional nature. Physicochemical characterization revealed that WsuXyn exhibits optimal endoxylanase activity at 70 °C and pH 7.0. Thermal stability assessments revealed that the enzyme is resilient to elevated temperatures, with a half-life of 168 h. Key kinetic parameters highlight the exceptional catalytic efficiency and strong affinity of the protein for xylan substrate. Moreover, WsuXyn-mediated hydrolysis of beechwood xylan has achieved 77 % xylan conversion, with xylose as the primary product. Structural analysis, amalgamated with docking simulations, has revealed strong binding forces between xylotetraose and the protein, with key amino acid residues, including Glu278, Tyr230, Glu160, Gly202, Cys201, Glu324, and Tyr283, playing pivotal roles in these interactions. Therefore, WsuXyn holds a strong promise for biodegradation and value-added product generation through lignocellulosic biomass conversion.


Assuntos
Geobacillus , Xilosidases , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Xilosidases/química , Xilanos/metabolismo , Especificidade por Substrato
13.
Environ Microbiome ; 19(1): 29, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706006

RESUMO

BACKGROUND: Hot spring biofilms provide a window into the survival strategies of microbial communities in extreme environments and offer potential for biotechnological applications. This study focused on green and brown biofilms thriving on submerged plant litter within the Sungai Klah hot spring in Malaysia, characterised by temperatures of 58-74 °C. Using Illumina shotgun metagenomics and Nanopore ligation sequencing, we investigated the microbial diversity and functional potential of metagenome-assembled genomes (MAGs) with specific focus on biofilm formation, heat stress response, and carbohydrate catabolism. RESULTS: Leveraging the power of both Illumina short-reads and Nanopore long-reads, we employed an Illumina-Nanopore hybrid assembly approach to construct MAGs with enhanced quality. The dereplication process, facilitated by the dRep tool, validated the efficiency of the hybrid assembly, yielding MAGs that reflected the intricate microbial diversity of these extreme ecosystems. The comprehensive analysis of these MAGs uncovered intriguing insights into the survival strategies of thermophilic taxa in the hot spring biofilms. Moreover, we examined the plant litter degradation potential within the biofilms, shedding light on the participation of diverse microbial taxa in the breakdown of starch, cellulose, and hemicellulose. We highlight that Chloroflexota and Armatimonadota MAGs exhibited a wide array of glycosyl hydrolases targeting various carbohydrate substrates, underscoring their metabolic versatility in utilisation of carbohydrates at elevated temperatures. CONCLUSIONS: This study advances understanding of microbial ecology on plant litter under elevated temperature by revealing the functional adaptation of MAGs from hot spring biofilms. In addition, our findings highlight potential for biotechnology application through identification of thermophilic lignocellulose-degrading enzymes. By demonstrating the efficiency of hybrid assembly utilising Illumina-Nanopore reads, we highlight the value of combining multiple sequencing methods for a more thorough exploration of complex microbial communities.

14.
Environ Sci Technol ; 47(1): 364-71, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23163577

RESUMO

Microbially mediated reduction of soluble U(VI) to U(IV) with subsequent precipitation of uraninite, UO(2(S)), has been proposed as a method for limiting uranium (U) migration. However, microbially reduced UO(2) may be susceptible to reoxidation by environmental factors, with Fe(III) (hydr)oxides playing a significant role. Little is known about the role that organic compounds such as Fe(III) chelators play in the stability of reduced U. Here, we investigate the impact of citrate, DFB, EDTA, and NTA on biogenic UO(2) reoxidation with ferrihydrite, goethite, and hematite. Experiments were conducted in anaerobic batch systems in PIPES buffer (10 mM, pH 7) with bicarbonate for approximately 80 days. Results showed EDTA accelerated UO(2) reoxidation the most at an initial rate of 9.5 µM day(-1) with ferrihydrite, 8.6 µM day(-1) with goethite, and 8.8 µM day(-1) with hematite. NTA accelerated UO(2) reoxidation with ferrihydrite at a rate of 4.8 µM day(-1); rates were less with goethite and hematite (0.66 and 0.71 µM day(-1), respectively). Citrate increased UO(2) reoxidation with ferrihydrite at a rate of 1.8 µM day(-1), but did not increase the extent of reaction with goethite or hematite, with no reoxidation in this case. In all cases, bicarbonate increased the rate and extent of UO(2) reoxidation with ferrihydrite in the presence and absence of chelators. The highest rate of UO(2) reoxidation occurred when the chelator promoted both UO(2) and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO(2) dissolution did not occur, UO(2) reoxidation likely proceeded through an aqueous Fe(III) intermediate with lower reoxidation rates observed. Reaction modeling suggests that strong Fe(II) chelators promote reoxidation whereas strong Fe(III) chelators impede it. These results indicate that chelators found in U contaminated sites may play a significant role in mobilizing U, potentially affecting bioremediation efforts.


Assuntos
Quelantes/química , Compostos Férricos/química , Urânio/química , Cloretos/metabolismo , Desferroxamina/química , Ácido Edético/química , Ácido Nitrilotriacético/química , Oxirredução , Shewanella putrefaciens/metabolismo , Urânio/metabolismo
15.
Pharmaceutics ; 15(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839880

RESUMO

Natural polysaccharides being investigated for use in the field of drug delivery commonly require the addition of sugars or pretreated biomass for fabrication. Geobacillus sp. strain WSUCF1 is a thermophile capable of secreting natural polymers, termed exopolysaccharides (EPSs), cultivated from cost-effective, non-treated lignocellulosic biomass carbon substrates. This preliminary investigation explores the capabilities of a 5% wt/wt amikacin-loaded film constructed from the crude EPS extracted from the strain WSUCF1. Film samples were seen to be non-cytotoxic to human keratinocytes and human skin-tissue fibroblasts, maintaining cell viability, on average, above 85% for keratinocytes over 72-h during a cell viability assay. The drug release profile of a whole film sample revealed a steady release of the antibiotic up to 12 h. The amikacin eluted by the EPS film was seen to be active against Staphylococcus aureus, maintaining above a 91% growth inhibition over a period of 48 h. Overall, this study demonstrates that a 5% amikacin-EPS film, grown from lignocellulosic biomass, can be a viable option for preventing or combating infections in clinical treatment.

16.
Micromachines (Basel) ; 14(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241716

RESUMO

Bacteria are capable of producing a specific type of biopolymer, termed exopolysaccharides (EPSs). EPSs from thermophile Geobacillus sp. strain WSUCF1 specifically can be assembled using cost-effective lignocellulosic biomass as the primary carbon substrate in lieu of traditional sugars. 5-fluorouracil (5-FU) is an FDA-approved, versatile chemotherapeutic that has yielded high efficacy against colon, rectum, and breast cancers. The present study investigates the feasibility of a 5% 5-fluorouracil film using thermophilic exopolysaccharides as the foundation in conjunction with a simple self-forming method. The drug-loaded film formulation was seen to be highly effective against A375 human malignant melanoma at its current concentration with viability of A375 dropping to 12% after six hours of treatment. A drug release profile revealed a slight burst release before it settled into an extended and maintained release of 5-FU. These initial findings provide evidence for the versatility of thermophilic exopolysaccharides produced from lignocellulosic biomass to act as a chemotherapeutic-delivering device and expand the overall applications of extremophilic EPSs.

17.
Res Sq ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720037

RESUMO

Initially, research disciplines operated independently, but the emergence of trans-disciplinary sciences led to convergence research, impacting graduate programs and research laboratories, especially in bioengineering and material engineering as presented here. Current graduate curriculum fails to efficiently prepare students for multidisciplinary and convergence research, thus creating a gap between the students and research laboratory expectations. We present a convergence training framework for graduate students, incorporating problem-based learning under the guidance of senior scientists and collaboration with postdoctoral researchers. This case study serves as a template for transdisciplinary convergent training projects - bridging the expertise gap and fostering successful convergence learning experiences in computational biointerface (material-biology interface). The 18-month Advanced Data Science Workshop, initiated in 2019, involves project-based learning, online training modules, and data collection. A pilot solution utilized Jupyter notebook on Google collaborator and culminated in a face-to-face workshop where project presentations and finalization occurred. The program started with 9 experts in the four diverse fields creating 14 curated projects in data science (Artificial Intelligence/Machine Learning), material science, biofilm engineering, and biointerface. These were integrated into convergence research through webinars by the experts. The experts chose 8 of the 14 projects to be part of an all-day in-person workshop, where over 20 learners formed eight teams that tackled complex problems at the interface of digital image processing, gene expression analysis, and material prediction. Each team was comprised of students and postdoctoral researchers or research scientists from diverse domains including computer science, materials science, and biofilm research. Some projects were selected for presentation at the international IEEE Bioinformatics conference in 2022, with three resulting Machine Learning (ML) models submitted as a journal paper. Students engaged in problem discussions, collaborated with experts from different disciplines, and received guidance in decomposing learning objectives. Based on learner feedback, this successful experience allows for consolidation and integration of convergence research via problem-based learning into the curriculum. Three bioengineering participants, who received training in data science and engineering, have received bioinformatics jobs in biotechnology industries.

18.
Microorganisms ; 11(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36677411

RESUMO

A significant amount of literature is available on biocorrosion, which makes manual extraction of crucial information such as genes and proteins a laborious task. Despite the fast growth of biology related corrosion studies, there is a limited number of gene collections relating to the corrosion process (biocorrosion). Text mining offers a potential solution by automatically extracting the essential information from unstructured text. We present a text mining workflow that extracts biocorrosion associated genes/proteins in sulfate-reducing bacteria (SRB) from literature databases (e.g., PubMed and PMC). This semi-automatic workflow is built with the Named Entity Recognition (NER) method and Convolutional Neural Network (CNN) model. With PubMed and PMCID as inputs, the workflow identified 227 genes belonging to several Desulfovibrio species. To validate their functions, Gene Ontology (GO) enrichment and biological network analysis was performed using UniprotKB and STRING-DB, respectively. The GO analysis showed that metal ion binding, sulfur binding, and electron transport were among the principal molecular functions. Furthermore, the biological network analysis generated three interlinked clusters containing genes involved in metal ion binding, cellular respiration, and electron transfer, which suggests the involvement of the extracted gene set in biocorrosion. Finally, the dataset was validated through manual curation, yielding a similar set of genes as our workflow; among these, hysB and hydA, and sat and dsrB were identified as the metal ion binding and sulfur metabolism genes, respectively. The identified genes were mapped with the pangenome of 63 SRB genomes that yielded the distribution of these genes across 63 SRB based on the amino acid sequence similarity and were further categorized as core and accessory gene families. SRB's role in biocorrosion involves the transfer of electrons from the metal surface via a hydrogen medium to the sulfate reduction pathway. Therefore, genes encoding hydrogenases and cytochromes might be participating in removing hydrogen from the metals through electron transfer. Moreover, the production of corrosive sulfide from the sulfur metabolism indirectly contributes to the localized pitting of the metals. After the corroboration of text mining results with SRB biocorrosion mechanisms, we suggest that the text mining framework could be utilized for genes/proteins extraction and significantly reduce the manual curation time.

19.
ACS Nano ; 17(1): 137-145, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36535017

RESUMO

Dehydrogenation of methanol (CH3OH) into direct current (DC) in fuel cells can be a potential energy conversion technology. However, their development is currently hampered by the high cost of electrocatalysts based on platinum and palladium, slow kinetics, the formation of carbon monoxide intermediates, and the requirement for high temperatures. Here, we report the use of graphene layers (GL) for generating DC electricity from microbially driven methanol dehydrogenation on underlying copper (Cu) surfaces. Genetically tractable Rhodobacter sphaeroides 2.4.1 (Rsp), a nonarchetypical methylotroph, was used for dehydrogenating methanol at the GL-Cu surfaces. We use electrochemical methods, microscopy, and spectroscopy methods to assess the effects of GL on methanol dehydrogenation by Rsp cells. The GL-Cu offers a 5-fold higher power density and 4-fold higher current density compared to bare Cu. The GL lowers charge transfer resistance to methanol dehydrogenation by 4 orders of magnitude by mitigating issues related to pitting corrosion of underlying Cu surfaces. The presented approach for catalyst-free methanol dehydrogenation on copper electrodes can improve the overall sustainability of fuel cell technologies.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Metanol/química , Cobre/química , Grafite/química , Eletrodos
20.
Front Microbiol ; 14: 1086021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125195

RESUMO

The growth and survival of an organism in a particular environment is highly depends on the certain indispensable genes, termed as essential genes. Sulfate-reducing bacteria (SRB) are obligate anaerobes which thrives on sulfate reduction for its energy requirements. The present study used Oleidesulfovibrio alaskensis G20 (OA G20) as a model SRB to categorize the essential genes based on their key metabolic pathways. Herein, we reported a feedback loop framework for gene of interest discovery, from bio-problem to gene set of interest, leveraging expert annotation with computational prediction. Defined bio-problem was applied to retrieve the genes of SRB from literature databases (PubMed, and PubMed Central) and annotated them to the genome of OA G20. Retrieved gene list was further used to enrich protein-protein interaction and was corroborated to the pangenome analysis, to categorize the enriched gene sets and the respective pathways under essential and non-essential. Interestingly, the sat gene (dde_2265) from the sulfur metabolism was the bridging gene between all the enriched pathways. Gene clusters involved in essential pathways were linked with the genes from seleno-compound metabolism, amino acid metabolism, secondary metabolite synthesis, and cofactor biosynthesis. Furthermore, pangenome analysis demonstrated the gene distribution, where 69.83% of the 116 enriched genes were mapped under "persistent," inferring the essentiality of these genes. Likewise, 21.55% of the enriched genes, which involves specially the formate dehydrogenases and metallic hydrogenases, appeared under "shell." Our methodology suggested that semi-automated text mining and network analysis may play a crucial role in deciphering the previously unexplored genes and key mechanisms which can help to generate a baseline prior to perform any experimental studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA