Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115867

RESUMO

Latent HIV infection is the main barrier to cure, and most HIV-infected cells reside in the gut, where distinct but unknown mechanisms may promote viral latency. Transforming growth factor ß (TGF-ß), which induces the expression of CD103 on tissue-resident memory T cells, has been implicated in HIV latency. Using CD103 as a surrogate marker to identify cells that have undergone TGF-ß signaling, we compared the HIV RNA/DNA contents and cellular transcriptomes of CD103+ and CD103- CD4 T cells from the blood and rectum of HIV-negative (HIV-) and antiretroviral therapy (ART)-suppressed HIV-positive (HIV+) individuals. Like gut CD4+ T cells, circulating CD103+ cells harbored more HIV DNA than did CD103- cells but transcribed less HIV RNA per provirus. Circulating CD103+ cells also shared a gene expression profile that is closer to that of gut CD4 T cells than to that of circulating CD103- cells, with significantly lower expression levels of ribosomal proteins and transcriptional and translational pathways associated with HIV expression but higher expression levels of a subset of genes implicated in suppressing HIV transcription. These findings suggest that blood CD103+ CD4 T cells can serve as a model to study the molecular mechanisms of HIV latency in the gut and reveal new cellular factors that may contribute to HIV latency.IMPORTANCE The ability of HIV to establish a reversibly silent, "latent" infection is widely regarded as the main barrier to curing HIV. Most HIV-infected cells reside in tissues such as the gut, but it is unclear what mechanisms maintain HIV latency in the blood or gut. We found that circulating CD103+ CD4+ T cells are enriched for HIV-infected cells in a latent-like state. Using RNA sequencing (RNA-seq), we found that CD103+ T cells share a cellular transcriptome that more closely resembles that of CD4+ T cells from the gut, suggesting that they are homing to or from the gut. We also identified the cellular genes whose expression distinguishes gut CD4+ or circulating CD103+ T cells from circulating CD103- T cells, including some genes that have been implicated in HIV expression. These genes may contribute to latent HIV infection in the gut and may serve as new targets for therapies aimed at curing HIV.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/virologia , Trato Gastrointestinal/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Cadeias alfa de Integrinas/metabolismo , Transcrição Gênica/genética , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , DNA Viral/metabolismo , Trato Gastrointestinal/imunologia , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Humanos , Linfócitos Intraepiteliais/metabolismo , Linfócitos Intraepiteliais/virologia , Provírus/fisiologia , RNA Viral/metabolismo , Proteínas Ribossômicas/genética , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/virologia , Latência Viral
2.
Proc Natl Acad Sci U S A ; 115(38): E8939-E8947, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126987

RESUMO

Identifying novel pathways that promote robust function and longevity of cytotoxic T cells has promising potential for immunotherapeutic strategies to combat cancer and chronic infections. We show that sprouty 1 and 2 (Spry1/2) molecules regulate the survival and function of memory CD8+ T cells. Spry1/2 double-knockout (DKO) ovalbumin (OVA)-specific CD8+ T cells (OT-I cells) mounted more vigorous autoimmune diabetes than WT OT-I cells when transferred to mice expressing OVA in their pancreatic ß-islets. To determine the consequence of Spry1/2 deletion on effector and memory CD8+ T cell development and function, we used systemic infection with lymphocytic choriomeningitis virus (LCMV) Armstrong. Spry1/2 DKO LCMV gp33-specific P14 CD8+ T cells survive contraction better than WT cells and generate significantly more polyfunctional memory T cells. The larger number of Spry1/2 DKO memory T cells displayed enhanced infiltration into infected tissue, demonstrating that absence of Spry1/2 can result in increased recall capacity. Upon adoptive transfer into naive hosts, Spry1/2 DKO memory T cells controlled Listeria monocytogenes infection better than WT cells. The enhanced formation of more functional Spry1/2 DKO memory T cells was associated with significantly reduced mTORC1 activity and glucose uptake. Reduced p-AKT, p-FoxO1/3a, and T-bet expression was also consistent with enhanced survival and memory accrual. Collectively, loss of Spry1/2 enhances the survival of effector CD8+ T cells and results in the formation of more protective memory cells. Deleting Spry1/2 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing the survival and functionality of effector and memory CD8+ T cells in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Linfócitos T CD8-Positivos/fisiologia , Memória Imunológica/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ativação Linfocitária/genética , Proteínas de Membrana/imunologia , Fosfoproteínas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva/métodos , Animais , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/urina , Modelos Animais de Doenças , Feminino , Humanos , Memória Imunológica/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Listeria monocytogenes/imunologia , Listeria monocytogenes/isolamento & purificação , Listeriose/imunologia , Listeriose/microbiologia , Listeriose/terapia , Ativação Linfocitária/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases , Quimeras de Transplante
3.
PLoS Pathog ; 14(2): e1006856, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29470552

RESUMO

HIV-1-infected cells persist indefinitely despite the use of combination antiretroviral therapy (ART), and novel therapeutic strategies to target and purge residual infected cells in individuals on ART are urgently needed. Here, we demonstrate that CD4+ T cell-associated HIV-1 RNA is often highly enriched in cells expressing CD30, and that cells expressing this marker considerably contribute to the total pool of transcriptionally active CD4+ lymphocytes in individuals on suppressive ART. Using in situ RNA hybridization studies, we show co-localization of CD30 with HIV-1 transcriptional activity in gut-associated lymphoid tissues. We also demonstrate that ex vivo treatment with brentuximab vedotin, an antibody-drug conjugate (ADC) that targets CD30, significantly reduces the total amount of HIV-1 DNA in peripheral blood mononuclear cells obtained from infected, ART-suppressed individuals. Finally, we observed that an HIV-1-infected individual, who received repeated brentuximab vedotin infusions for lymphoma, had no detectable virus in peripheral blood mononuclear cells. Overall, CD30 may be a marker of residual, transcriptionally active HIV-1 infected cells in the setting of suppressive ART. Given that CD30 is only expressed on a small number of total mononuclear cells, it is a potential therapeutic target of persistent HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Antígeno Ki-1/metabolismo , Tecido Linfoide/virologia , Reto/virologia , Ativação Transcricional , Fármacos Anti-HIV/farmacologia , Terapia Antirretroviral de Alta Atividade , Biomarcadores/sangue , Biomarcadores/metabolismo , Brentuximab Vedotin , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Estudos de Coortes , DNA Viral/sangue , DNA Viral/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , HIV-1/patogenicidade , Humanos , Imunoconjugados/farmacologia , Hibridização In Situ , Antígeno Ki-1/antagonistas & inibidores , Antígeno Ki-1/sangue , Antígeno Ki-1/química , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , RNA Viral/sangue , RNA Viral/metabolismo , Reto/efeitos dos fármacos , Reto/metabolismo , Reto/patologia , Solubilidade , Ativação Transcricional/efeitos dos fármacos , Carga Viral/efeitos dos fármacos
4.
Immunity ; 31(1): 131-44, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19604492

RESUMO

An effective immune response against infectious agents involves massive expansion of CD8(+) T cells. Once the infection is cleared, the majority of these effector cells die through unknown mechanisms. How is expansion controlled to maximize pathogen clearance and minimize immunopathology? We found, after Listeria infection, plasma transforming growth factor beta (TGF-beta) titers increased concomitant with the expansion of effector CD8(+) T cells. Blocking TGF-beta signaling did not affect effector function of CD8(+) T cells. However, TGF-beta controlled effector cell number by lowering Bcl-2 amounts and selectively promoting the apoptosis of short-lived effector cells. TGF-beta-mediated apoptosis of this effector subpopulation occurred during clonal expansion and contraction, whereas interleukin-15 (IL-15) promoted their survival only during contraction. We demonstrate that the number of effector CD8(+) T cells is tightly controlled by multiple extrinsic signals throughout effector differentiation; this plasticity should be exploited during vaccine design and immunotherapy against tumors and autoimmune diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-15/imunologia , Listeriose/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Apoptose/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Interleucina-15/metabolismo , Listeria/imunologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(17): 6961-6, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569233

RESUMO

TGF-ß signaling in T cells is critical for peripheral T-cell tolerance by regulating effector CD4(+) T helper (Th) cell differentiation. However, it is still controversial to what extent TGF-ß signaling in Foxp3(+) regulatory T (Treg) cells contributes to immune homeostasis. Here we showed that abrogation of TGF-ß signaling in thymic T cells led to rapid type 1 diabetes (T1D) development in NOD mice transgenic for the BDC2.5 T-cell receptor. Disease development in these mice was associated with increased peripheral Th1 cells, whereas Th17 cells and Foxp3(+) Treg cells were reduced. Blocking of IFN-γ signaling alone completely suppressed diabetes development in these mice, indicating a critical role of Th1 cells in this model. Furthermore, deletion of TGF-ß signaling in peripheral effector CD4(+) T cells, but not Treg cells, also resulted in rapid T1D development, suggesting that conventional CD4(+) T cells are the main targets of TGF-ß to suppress T1D. TGF-ß signaling was dispensable for Treg cell function, development, and maintenance, but excessive IFN-γ production due to the absence of TGF-ß signaling in naive CD4(+) T cells indirectly caused dysregulated Treg cell homeostasis. We further showed that T cell-derived TGF-ß1 was critical for suppression of Th1 cell differentiation and T1D development. These results indicate that autocrine/paracrine TGF-ß signaling in diabetogenic CD4(+) T cells, but not Treg cells, is essential for controlling T1D development.


Assuntos
Comunicação Celular/fisiologia , Diabetes Mellitus Tipo 1/etiologia , Homeostase/imunologia , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Primers do DNA/genética , Diabetes Mellitus Tipo 1/imunologia , Citometria de Fluxo , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Immunol ; 190(12): 6340-50, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23686479

RESUMO

Inflammatory and anti-inflammatory cytokines play an important role in the generation of effector and memory CD8(+) T cells. We used two different models, transgenic expression of truncated (dominant negative) form of TGF-ßRII (dnTGFßRII) and Cre-mediated deletion of the floxed TGF-ßRII to examine the role of TGF-ß signaling in the formation, function, and homeostatic proliferation of memory CD8(+) T cells. Blocking TGF-ß signaling in effector CD8(+) T cells using both of these models demonstrated a role for TGF-ß in regulating the number of short-lived effector cells but did not alter memory CD8(+) T cell formation and their function upon Listeria monocytogenes infection in mice. Interestingly, however, a massive lymphoproliferative disorder and cellular transformation were observed in Ag-experienced and homeostatically generated memory CD8(+) T cells only in cells that express the dnTGFßRII and not in cells with a complete deletion of TGF-ßRII. Furthermore, the development of transformed memory CD8(+) T cells expressing dnTGFßRII was IL-7- and IL-15-independent, and MHC class I was not required for their proliferation. We show that transgenic expression of the dnTGFßRII, rather than the absence of TGF-ßRII-mediated signaling, is responsible for dysregulated expansion of memory CD8(+) T cells. This study uncovers a previously unrecognized dominant function of the dnTGFßRII in CD8(+) T cell proliferation and cellular transformation, which is caused by a mechanism that is different from the absence of TGF-ß signaling. These results should be considered during both basic and translational studies where there is a desire to block TGF-ß signaling in CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Transtornos Linfoproliferativos/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Transdução de Sinais/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/metabolismo , Citometria de Fluxo , Listeriose/imunologia , Listeriose/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
7.
Front Immunol ; 15: 1341804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515757

RESUMO

IL-15 has shown preclinical activity by enhancing the functional maturation of natural killer (NK) cells. Clinical evaluation of the potential anticancer activity of most cytokines, including IL-15, has been limited by low tolerability and rapid in vivo clearance. Efbalropendekin Alfa (XmAb24306) is a soluble IL15/IL15-receptor alpha heterodimer complex fused to a half-life extended Fc domain (IL15/IL15Rα-Fc), engineered with mutations to reduce IL-15 affinity for CD122. Reduced affinity drives lower potency, leading to prolonged pharmacodynamic response in cynomolgus monkeys. We show that in vitro, human NK cells treated with XmAb24306 demonstrate enhanced cytotoxicity against various tumor cell lines. XmAb24306-treated NK cells also exhibit enhanced killing of 3D colorectal cancer spheroids. Daratumumab (dara), a monoclonal antibody (mAb) that targets CD38 results in antibody-dependent cellular cytotoxicity (ADCC) of both multiple myeloma (MM) cells and NK cells. Addition of XmAb24306 increases dara-mediated NK cell ADCC against various MM cell lines in vitro. Because NK cells express CD38, XmAb24306 increases dara-mediated NK cell fratricide, but overall does not negatively impact the ADCC activity against a MM cell line likely due to increased NK cell activity of the surviving cells. These data show that XmAb24306 increases direct and ADCC-mediated human NK cell cytotoxicity in vitro.


Assuntos
Antineoplásicos , Interleucina-15 , Humanos , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Antineoplásicos/farmacologia , Citocinas/metabolismo , Fatores Imunológicos/metabolismo , Células Matadoras Naturais , Linhagem Celular Tumoral
8.
Front Pharmacol ; 15: 1380000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887559

RESUMO

Introduction: Interleukin 15 (IL-15) is a potential anticancer agent and numerous engineered IL-15 agonists are currently under clinical investigation. Selective targeting of IL-15 to specific lymphocytes may enhance therapeutic effects while helping to minimize toxicities. Methods: We designed and built a heterodimeric targeted cytokine (TaCk) that consists of an anti-programmed cell death 1 receptor antibody (anti-PD-1) and an engineered IL-15. This "PD1/IL15" selectively delivers IL-15 signaling to lymphocytes expressing PD-1. We then investigated the pharmacokinetic (PK) and pharmacodynamic (PD) effects of PD1/IL15 TaCk on immune cell subsets in cynomolgus monkeys after single and repeat intravenous dose administrations. We used these results to determine the first-in-human (FIH) dose and dosing frequency for early clinical trials. Results: The PD1/IL15 TaCk exhibited a nonlinear multiphasic PK profile, while the untargeted isotype control TaCk, containing an anti-respiratory syncytial virus antibody (RSV/IL15), showed linear and dose proportional PK. The PD1/IL15 TaCk also displayed a considerably prolonged PK (half-life range ∼1.0-4.1 days) compared to wild-type IL-15 (half-life ∼1.1 h), which led to an enhanced cell expansion PD response. The PD was dose-dependent, durable, and selective for PD-1+ lymphocytes. Notably, the dose- and time-dependent PK was attributed to dynamic TMDD resulting from test article-induced lymphocyte expansion upon repeat administration. The recommended first-in-human (FIH) dose of PD1/IL15 TaCk is 0.003 mg/kg, determined based on a minimum anticipated biological effect level (MABEL) approach utilizing a combination of in vitro and preclinical in vivo data. Conclusion: This work provides insight into the complex PK/PD relationship of PD1/IL15 TaCk in monkeys and informs the recommended starting dose and dosing frequency selection to support clinical evaluation of this novel targeted cytokine.

9.
Cell Rep Med ; 5(2): 101393, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280376

RESUMO

In metastatic urothelial cancer (mUC), cisplatin versus carboplatin leads to durable disease control in a subset of patients. The IMvigor130 trial reveals more favorable effects with atezolizumab combined with gemcitabine and cisplatin (GemCis) versus gemcitabine and carboplatin (GemCarbo). This study investigates the immunomodulatory effects of cisplatin as a potential explanation for these observations. Our findings indicate that improved outcomes with GemCis versus GemCarbo are primarily observed in patients with pretreatment tumors exhibiting features of restrained adaptive immunity. In addition, GemCis versus GemCarbo ± atezolizumab induces transcriptional changes in circulating immune cells, including upregulation of antigen presentation and T cell activation programs. In vitro experiments demonstrate that cisplatin, compared with carboplatin, exerts direct immunomodulatory effects on cancer cells, promoting dendritic cell activation and antigen-specific T cell killing. These results underscore the key role of immune modulation in cisplatin's efficacy in mUC and highlight the importance of specific chemotherapy backbones in immunotherapy combination regimens.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Neoplasias Urológicas , Humanos , Carboplatina/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/induzido quimicamente , Carcinoma de Células de Transição/patologia , Cisplatino/uso terapêutico , Desoxicitidina/uso terapêutico , Gencitabina , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/induzido quimicamente , Neoplasias Urológicas/patologia
10.
Eur J Pharm Sci ; 186: 106450, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084985

RESUMO

XmAb24306 is a lymphoproliferative interleukin (IL)-15/IL-15 receptor α (IL-15Rα) Fc-fusion protein currently under clinical investigation as an immunotherapeutic agent for cancer treatment. XmAb24306 contains mutations in IL-15 that attenuate its affinity to the heterodimeric IL-15 receptor ßγ (IL-15R). We observe substantially prolonged pharmacokinetics (PK) (half-life ∼ 2.5 to 4.5 days) in single- and repeat-dose cynomolgus monkey (cyno) studies compared to wild-type IL-15 (half-life ∼ 1 hour), leading to increased exposure and enhanced and durable expansion of NK cells, CD8+ T cells and CD4-CD8- (double negative [DN]) T cells. Drug clearance varied with dose level and time post-dose, and PK exposure decreased upon repeated dosing, which we attribute to increased target-mediated drug disposition (TMDD) resulting from drug-induced lymphocyte expansion (i.e., pharmacodynamic (PD)-enhanced TMDD). We developed a quantitative systems pharmacology (QSP) model to quantify the complex PKPD behaviors due to the interactions of XmAb24306 with multiple cell types (CD8+, CD4+, DN T cells, and NK cells) in the peripheral blood (PB) and lymphoid tissues. The model, which includes nonspecific drug clearance, binding to and TMDD by IL15R differentially expressed on lymphocyte subsets, and resultant lymphocyte margination/migration out of PB, expansion in lymphoid tissues, and redistribution to the blood, successfully describes the systemic PK and lymphocyte kinetics observed in the cyno studies. Results suggest that after 3 doses of every-two-week (Q2W) doses up to 70 days, the relative contributions of each elimination pathway to XmAb24306 clearance are: DN T cells > NK cells > CD8+ T cells > nonspecific clearance > CD4+ T cells. Modeling suggests that observed cellular expansion in blood results from the influx of cells expanded by the drug in lymphoid tissues. The model is used to predict lymphoid tissue expansion and to simulate PK-PD for different dose regimens. Thus, the model provides insight into the mechanisms underlying the observed PK-PD behavior of an engineered cytokine and can serve as a framework for the rapid integration and analysis of data that emerges from ongoing clinical studies in cancer patients as single-agent or given in combination.


Assuntos
Antineoplásicos , Interleucina-15 , Animais , Macaca fascicularis/metabolismo , Interleucina-15/metabolismo , Farmacologia em Rede , Linfócitos/metabolismo , Fatores Imunológicos , Receptores de Interleucina-15
11.
Nat Commun ; 14(1): 4703, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543621

RESUMO

TGFß signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFß signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFß and PD-L1 restrain intratumoral stem cell-like CD8 T cell (TSCL) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFß/PD-L1 blockade IFNγhi CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFß therapy efficacy. Our data suggest that TGFß works with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Fator de Crescimento Transformador beta , Feminino , Animais , Camundongos , Diferenciação Celular , Linfócitos T CD8-Positivos/imunologia , Células-Tronco , Antígeno B7-H1/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Interferon gama/imunologia , Exaustão das Células T , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , RNA-Seq
12.
Proc Natl Acad Sci U S A ; 106(24): 9785-90, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19497879

RESUMO

Cytolytic CD8(+) T cells (CTLs) kill virally infected cells, tumor cells, or other potentially autoreactive T cells in a calcium-dependent manner. To date, the molecular mechanism that leads to calcium intake during CTL differentiation and function has remained unresolved. We demonstrate that desmoyokin (AHNAK1) is expressed in mature CTLs, but not in naive CD8(+) T cells, and is critical for calcium entry required for their proper function during immune response. We show that mature AHNAK1-deficient CTLs exhibit reduced Ca(v)1.1 alpha1 subunit expression (also referred to as L-type calcium channels or alpha1S pore-forming subunits), which recently were suggested to play a role in calcium entry into CD4(+) T cells. AHNAK1-deficient CTLs show marked reduction in granzyme-B production, cytolytic activity, and IFN-gamma secretion after T cell receptor stimulation. Our results demonstrate an AHNAK1-dependent mechanism controlling calcium entry during CTL effector function.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Linfócitos T/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Interferon gama/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase , Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia
13.
PLoS One ; 17(4): e0261795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35417481

RESUMO

Laboratory mice are widely studied as models of mammalian biology, including the microbiota. However, much of the taxonomic and functional diversity of the mouse gut microbiome is missed in current metagenomic studies, because genome databases have not achieved a balanced representation of the diverse members of this ecosystem. Towards solving this problem, we used flow cytometry and low-coverage sequencing to capture the genomes of 764 single cells from the stool of three laboratory mice. From these, we generated 298 high-coverage microbial genome assemblies, which we annotated for open reading frames and phylogenetic placement. These genomes increase the gene catalog and phylogenetic breadth of the mouse microbiota, adding 135 novel species with the greatest increase in diversity to the Muribaculaceae and Bacteroidaceae families. This new diversity also improves the read mapping rate, taxonomic classifier performance, and gene detection rate of mouse stool metagenomes. The novel microbial functions revealed through our single-cell genomes highlight previously invisible pathways that may be important for life in the murine gastrointestinal tract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Humanos , Mamíferos/genética , Metagenoma , Metagenômica , Camundongos , Microbiota/genética , Filogenia
14.
J Immunother Cancer ; 10(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35981786

RESUMO

BACKGROUND: A growing body of evidence suggests that T-cell responses against neoantigens are critical regulators of response to immune checkpoint blockade. We previously showed that circulating neoantigen-specific CD8 T cells in patients with lung cancer responding to anti-Programmed death-ligand 1 (PD-L1) (atezolizumab) exhibit a unique phenotype with high expression of CD57, CD244, and KLRG1. Here, we extended our analysis on neoantigen-specific CD8 T cells to patients with metastatic urothelial cancer (mUC) and further profiled total CD8 T cells to identify blood-based predictive biomarkers of response to atezolizumab. METHODS: We identified tumor neoantigens from 20 patients with mUC and profiled their peripheral CD8 T cells using highly multiplexed combinatorial tetramer staining. Another set of patients with mUC treated with atezolizumab (n=30) or chemotherapy (n=40) were selected to profile peripheral CD8 T cells by mass cytometry. Using single-cell transcriptional analysis (single-cell RNA sequencing (scRNA-seq)), together with CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) and paired T-cell receptor (TCR) sequencing, we further characterized peripheral CD8 T cells in a subset of patients (n=16). RESULTS: High frequency of CD57 was observed in neoantigen-specific CD8 T cells in patients with mUC responding to atezolizumab. Extending these findings to bulk CD8 T cells, we found higher frequency of CD57 expressing CD8 T cells before treatment in patients responding to atezolizumab (n=20, p<0.01) but not to chemotherapy. These findings were corroborated in a validation cohort (n=30, p<0.01) and notably were independent of known biomarkers of response. scRNA-seq analysis identified a clonally expanded cluster enriched within CD57+ CD8 T cells in responding patients characterized by higher expression of genes associated with activation, cytotoxicity, and tissue-resident memory markers. Furthermore, compared with CD57- CD8 T cells, TCRs of CD57+ CD8 T cells showed increased overlap with the TCR repertoire of tumor-infiltrating T cells. CONCLUSIONS: Collectively, we show high frequencies of CD57 among neoantigen-specific and bulk CD8 T cells in patients responding to atezolizumab. The TCR repertoire overlap between peripheral CD57+ CD8 T cells and tumor-infiltrating lymphocytes suggest that accumulation of peripheral CD57+ CD8 T cells is reflective of an ongoing antitumor T-cell response. Our findings provide evidence and rationale for using circulating CD8 T cells expressing CD57 as a readily accessible blood-based biomarker for selecting patients with mUC for atezolizumab therapy.


Assuntos
Carcinoma de Células de Transição , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Antígenos CD57/imunologia , Linfócitos T CD8-Positivos , Humanos , Receptores de Antígenos de Linfócitos T , Análise de Célula Única
15.
Cytometry B Clin Cytom ; 100(1): 10-18, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33432667

RESUMO

The success of cancer immunotherapy (CIT) in the past decade has brought renewed excitement and the need to better understand how the human immune system functions during health and disease. Advances in single cell technologies have also inspired the creation of a Human Cell Atlas to identify and describe every cell in the human body with the intention of elucidating how to "fix" the ones that fail normal function. For example, treatment of cancer patients with immune checkpoint blockade (ICB) antibodies can reinvigorate their T cells and produce durable clinical benefit in a subset of patients, but a number of resistance mechanisms exist that prohibit full benefit to all treated patients. Early detection of biomarkers of response and mechanisms of resistance are needed to identify the patients who can benefit most from ICB. A noninvasive approach to predict treatment outcomes early after immunotherapies is a longitudinal analysis of peripheral blood immune cells using flow cytometry. Here we review some of the advances in our understanding of how ICB antibodies can re-invigorate tumor-specific T cells and also highlight the recent advances in high complexity flow cytometry, including spectral cytometers, that allow longitudinal sampling and deep immune phenotyping in clinical settings. We encourage the scientific community to utilize advanced cytometry platforms and analyses for immune monitoring in order to optimize CIT treatments for maximum clinical benefit.


Assuntos
Citometria de Fluxo , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Humanos
16.
Nat Commun ; 12(1): 3969, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172722

RESUMO

Immune checkpoint inhibitors targeting the PD-1/PD-L1 axis lead to durable clinical responses in subsets of cancer patients across multiple indications, including non-small cell lung cancer (NSCLC), urothelial carcinoma (UC) and renal cell carcinoma (RCC). Herein, we complement PD-L1 immunohistochemistry (IHC) and tumor mutation burden (TMB) with RNA-seq in 366 patients to identify unifying and indication-specific molecular profiles that can predict response to checkpoint blockade across these tumor types. Multiple machine learning approaches failed to identify a baseline transcriptional signature highly predictive of response across these indications. Signatures described previously for immune checkpoint inhibitors also failed to validate. At the pathway level, significant heterogeneity is observed between indications, in particular within the PD-L1+ tumors. mUC and NSCLC are molecularly aligned, with cell cycle and DNA damage repair genes associated with response in PD-L1- tumors. At the gene level, the CDK4/6 inhibitor CDKN2A is identified as a significant transcriptional correlate of response, highlighting the association of non-immune pathways to the outcome of checkpoint blockade. This cross-indication analysis reveals molecular heterogeneity between mUC, NSCLC and RCC tumors, suggesting that indication-specific molecular approaches should be prioritized to formulate treatment strategies.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Resultado do Tratamento , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Sequenciamento Completo do Genoma
17.
Nat Commun ; 10(1): 4344, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554802

RESUMO

Innate immune responses to Zika virus (ZIKV) are dampened in the lower female reproductive tract (LFRT) compared to other tissues, but the mechanism that underlies this vulnerability is poorly understood. Using tissues from uninfected and vaginally ZIKV-infected macaques and mice, we show that low basal expression of RNA-sensing pattern recognition receptors (PRRs), or their co-receptors, in the LFRT contributes to high viral replication in this tissue. In the LFRT, ZIKV sensing provides limited protection against viral replication, and the sensors are also minimally induced after vaginal infection. While IFNα/ß receptor signaling offers minimal protection in the LFRT, it is required to prevent dissemination of ZIKV to other tissues, including the upper FRT. Our findings support a role for RNA-sensing PRRs in the dampened innate immunity against ZIKV in the LFRT compared to other tissues and underlie potential implications for systemic dissemination upon heterosexual transmission of ZIKV in women.


Assuntos
Genitália Feminina/imunologia , Imunidade Inata/imunologia , RNA Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Feminino , Regulação Viral da Expressão Gênica , Genitália Feminina/metabolismo , Genitália Feminina/virologia , Humanos , Imunidade Inata/genética , Macaca mulatta , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Viral/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo , Vagina/imunologia , Vagina/metabolismo , Vagina/virologia , Replicação Viral/genética , Replicação Viral/imunologia , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
18.
Cell Rep ; 28(8): 2169-2181.e4, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433990

RESUMO

Coordinate control of T cell proliferation, survival, and differentiation are essential for host protection from pathogens and cancer. Long-lived memory cells, whose precursors are formed during the initial immunological insult, provide protection from future encounters, and their generation is the goal of many vaccination strategies. microRNAs (miRNAs) are key nodes in regulatory networks that shape effective T cell responses through the fine-tuning of thousands of genes. Here, using compound conditional mutant mice to eliminate miR-15/16 family miRNAs in T cells, we show that miR-15/16 restrict T cell cycle, survival, and memory T cell differentiation. High throughput sequencing of RNA isolated by cross-linking immunoprecipitation of AGO2 combined with gene expression analysis in miR-15/16-deficient T cells indicates that these effects are mediated through the direct inhibition of an extensive network of target genes within pathways critical to cell cycle, survival, and memory.


Assuntos
Ciclo Celular , Diferenciação Celular , Memória Imunológica , MicroRNAs/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Sobrevivência Celular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Loci Gênicos , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Transgênicos , MicroRNAs/genética
19.
Mucosal Immunol ; 11(4): 1158-1167, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29456247

RESUMO

Determining the magnitude of local immune response during mucosal exposure to viral pathogens is critical to understanding the mechanism of viral pathogenesis. We previously showed that vaginal inoculation of lymphocytic choriomeningitis virus (LCMV) fails to induce a robust innate immune response in the lower female reproductive tract (FRT), allowing high titer viral replication and a delay in T-cell-mediated viral control. Despite this immunological delay, LCMV replication remained confined mainly to the FRT and the draining iliac lymph node. Here, we show that rectal infection with LCMV triggers type I/III interferon responses, followed by innate immune activation and lymphocyte recruitment to the colon. In contrast to vaginal exposure, innate immunity controls LCMV replication in the colon, but virus rapidly disseminates systemically. Virus-induced inflammation promotes the recruitment of LCMV target cells to the colon followed by splenic viral dissemination by infected B cells, and to a lesser extent by CD8 T cells. These findings demonstrate major immunological differences between vaginal and rectal exposure to the same viral pathogen, highlighting unique risks associated with each of these common routes of sexual viral transmission.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos B/imunologia , Colo/imunologia , Linfócitos/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Vagina/imunologia , Animais , Linfócitos B/virologia , Movimento Celular , Colo/virologia , Feminino , Imunidade Inata , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reto/metabolismo , Vagina/virologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-28108486

RESUMO

Transforming growth factor ß (TGF-ß) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-ß alters immunity under various conditions. Under steady-state conditions, TGF-ß regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-ß inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-ß controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-ß plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.


Assuntos
Autoimunidade , Ativação Linfocitária , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Artrite Reumatoide/imunologia , Linfócitos B/imunologia , Infecções Bacterianas/imunologia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Granulócitos/imunologia , Homeostase , Humanos , Tolerância Imunológica , Doenças Inflamatórias Intestinais/imunologia , Isoantígenos/imunologia , Células Matadoras Naturais/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Monócitos/imunologia , Doenças Parasitárias/imunologia , Linfócitos T/imunologia , Timo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA