Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534563

RESUMO

The field of regenerative medicine has recently witnessed groundbreaking advancements that hold immense promise for treating a wide range of diseases and injuries. At the forefront of this revolutionary progress are stem cells. Stem cells typically reside in specialized environments in vivo, known as microenvironments or niches, which play critical roles in regulating stem cell behavior and determining their fate. Therefore, understanding the complex microenvironments that surround stem cells is crucial for advancing treatment options in regenerative medicine and tissue engineering applications. Several research articles have made significant contributions to this field by exploring the interactions between stem cells and their surrounding niches, investigating the influence of biomechanical and biochemical cues, and developing innovative strategies for tissue regeneration. This review highlights the key findings and contributions of these studies, shedding light on the diverse applications that may arise from the understanding of stem cell microenvironments, thus harnessing the power of these microenvironments to transform the landscape of medicine and offer new avenues for regenerative therapies.

2.
Biomater Adv ; 137: 212808, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929248

RESUMO

The use of smart materials in tissue engineering is becoming increasingly appealing to provide additional functionalities and control over cell fate. The stages of tissue development and regeneration often require various electrical and electromechanical cues supported by the extracellular matrix, which is often neglected in most tissue engineering approaches. Particularly, in cardiac cells, electrical signals modulate cell activity and are responsible for the maintenance of the excitation-contraction coupling. Addition of electroconductive and topographical cues improves the biomimicry of cardiac tissues and plays an important role in driving cells towards the desired phenotype. Current platforms used to apply electrical stimulation to cells in vitro often require large external equipment and wires and electrodes immersed in the culture media, limiting the scalability and applicability of this process. Piezoelectric materials represent a shift in paradigm in materials and methods aimed at providing electrical stimulation to cardiac cells since they can produce and deliver electrical signals to cells and tissues by mechanoelectrical transduction. Despite the ability of piezoelectric materials to mimic the mechanoelectrical transduction of the heart, the use of these materials is limited in cardiac tissue engineering and methods to characterise piezoelectricity are often built in-house, which poses an additional difficulty when comparing results from the literature. In this work, we aim at providing an overview of the main challenges in cardiac tissue engineering and how piezoelectric materials could offer a solution to them. A revision on the existing literature in electrospun piezoelectric materials applied to cardiac tissue engineering is performed for the first time, as electrospinning plays an important role in the manufacturing of scaffolds with enhanced piezoelectricity and extracellular matrix native-like morphology. Finally, an overview of the current techniques used to evaluate piezoelectricity and their limitations is provided.


Assuntos
Coração , Engenharia Tecidual , Diferenciação Celular , Eletricidade , Matriz Extracelular , Engenharia Tecidual/métodos
3.
Bioengineering (Basel) ; 9(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324798

RESUMO

Novel green materials not sourced from animals and with low environmental impact are becoming increasingly appealing for biomedical and cellular agriculture applications. Marine biomaterials are a rich source of structurally diverse compounds with various biological activities. Kappa-carrageenan (κ-c) is a potential candidate for tissue engineering applications due to its gelation properties, mechanical strength, and similar structural composition of glycosaminoglycans (GAGs), possessing several advantages when compared to other algae-based materials typically used in bioprinting such as alginate. For those reasons, this material was selected as the main polysaccharide component of the bioinks developed herein. In this work, pristine κ-carrageenan bioinks were successfully formulated for the first time and used to fabricate 3D scaffolds by bioprinting. Ink formulation and printing parameters were optimized, allowing for the manufacturing of complex 3D structures. Mechanical compression tests and dry weight determination revealed young's modulus between 24.26 and 99.90 kPa and water contents above 97%. Biocompatibility assays, using a mouse fibroblast cell line, showed high cell viability and attachment. The bioprinted cells were spread throughout the scaffolds with cells exhibiting a typical fibroblast-like morphology similar to controls. The 3D bio-/printed structures remained stable under cell culture conditions for up to 11 days, preserving high cell viability values. Overall, we established a strategy to manufacture 3D bio-/printed scaffolds through the formulation of novel bioinks with potential applications in tissue engineering and cellular agriculture.

4.
Bioengineering (Basel) ; 9(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36290522

RESUMO

Chronic kidney disease is one of the deadliest diseases globally and treatment methods are still insufficient, relying mostly on transplantation and dialysis. Engineering of kidney tissues in vitro from induced pluripotent stem cells (iPSCs) could provide a solution to this medical need by restoring the function of damaged kidneys. However, implementation of such approaches is still challenging to achieve due to the complexity of mature kidneys in vivo. Several strategies have been defined to obtain kidney progenitor endothelial and epithelial cells that could form nephrons and proximal tube cells, but these lack tissue maturity and vascularisation to be further implemented. Electrospinning is a technique that has shown promise in the development of physiological microenvironments of several tissues and could be applied in the engineering of kidney tissues. Synthetic polymers such as polycaprolactone, polylactic acid, and poly(vinyl alcohol) have been explored in the manufacturing of fibres that align and promote the proliferation and cell-to-cell interactions of kidney cells. Natural polymers including silk fibroin and decellularised extracellular matrix have also been explored alone and in combination with synthetic polymers promoting the differentiation of podocytes and tubular-specific cells. Despite these attempts, further work is still required to advance the applications of electrospun fibres in kidney tissue engineering and explore this technique in combination with other manufacturing methods such as bioprinting to develop more organised, mature and reproducible kidney organoids.

5.
iScience ; 25(7): 104552, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35784786

RESUMO

Conductive hydrogels are emerging as promising materials for bioelectronic applications as they minimize the mismatch between biological and electronic systems. We propose a strategy to bioprint biohybrid conductive bioinks based on decellularized extracellular matrix (dECM) and multiwalled carbon nanotubes. These inks contained conductive features and morphology of the dECM fibers. Electrical stimulation (ES) was applied to bioprinted structures containing human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). It was observed that in the absence of external ES, the conductive properties of the materials can improve the contractile behavior of the hPSC-CMs, and this effect is enhanced under the application of external ES. Genetic markers indicated a trend toward a more mature state of the cells with upregulated calcium handling proteins and downregulation of calcium channels involved in the generation of pacemaking currents. These results demonstrate the potential of our strategy to manufacture conductive hydrogels in complex geometries for actuating purposes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33442962

RESUMO

Bioelectronic medicine aims to interface electronic technology with biological components and design more effective therapeutic and diagnostic tools. Advances in nanotechnology have moved the field forward improving the seamless interaction between biological and electronic components. In the lab many of these nanobioelectronic devices have the potential to improve current treatment approaches, including those for cancer, cardiovascular disorders, and disease underpinned by malfunctions in neuronal electrical communication. While promising, many of these devices and technologies require further development before they can be successfully applied in a clinical setting. Here, we highlight recent work which is close to achieving this goal, including discussion of nanoparticles, carbon nanotubes, and nanowires for medical applications. We also look forward toward the next decade to determine how current developments in nanotechnology could shape the growing field of bioelectronic medicine. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.


Assuntos
Nanopartículas , Nanotubos de Carbono , Nanofios , Eletrônica , Nanotecnologia
7.
Polymers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810431

RESUMO

Conductive hydrogel-based materials are attracting considerable interest for bioelectronic applications due to their ability to act as more compatible soft interfaces between biological and electrical systems. Despite significant advances that are being achieved in the manufacture of hydrogels, precise control over the topographies and architectures remains challenging. In this work, we present for the first time a strategy to manufacture structures with resolutions in the micro-/nanoscale based on hydrogels with enhanced electrical properties. Gelatine methacrylate (GelMa)-based inks were formulated for two-photon polymerisation (2PP). The electrical properties of this material were improved, compared to pristine GelMa, by dispersion of multi-walled carbon nanotubes (MWCNTs) acting as conductive nanofillers, which was confirmed by electrochemical impedance spectroscopy and cyclic voltammetry. This material was also confirmed to support human induced pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) viability and growth. Ultra-thin film structures of 10 µm thickness and scaffolds were manufactured by 2PP, demonstrating the potential of this method in areas spanning tissue engineering and bioelectronics. Though further developments in the instrumentation are required to manufacture more complex structures, this work presents an innovative approach to the manufacture of conductive hydrogels in extremely low resolution.

8.
ACS Appl Mater Interfaces ; 11(9): 8928-8936, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735349

RESUMO

There is a pressing need to advance our ability to construct three-dimensional (3D) functional bioelectronic interfaces. Additionally, to ease the transition to building cellular electronic systems, a remote approach to merge electrical components with biology is desirable. By combining 3D digital inkjet printing with bipolar electrochemistry, we remotely control and fabricate conductive wires, forming a first of its kind contactless bionic manufacturing procedure. It enables controlled fabrication of conductive wires in a three-dimensional configuration. Moreover, we demonstrate that this technology could be used to grow and interface conductive conduits in situ with mammalian cells, offering a new strategy to engineering bioelectronic interfaces. This represents a step change in the production of functional complex circuitry and considerably increases the manufacturing capabilities of merging cells with electronics. This approach provides a platform to construct bioelectronics in situ offering a potential paradigm shift in the methods for building bioelectronics with potential applications in biosensing and bioelectronic medicine.


Assuntos
Eletrônica , Prata/química , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Células CHO , Cricetinae , Cricetulus , Condutividade Elétrica , Técnicas Eletroquímicas , Nanopartículas/química , Impressão Tridimensional
9.
Bioelectron Med ; 4: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32232077

RESUMO

Cellular homeostasis is in part controlled by biological generated electrical activity. By interfacing biology with electronic devices this electrical activity can be modulated to actuate cellular behaviour. There are current limitations in merging electronics with biology sufficiently well to target and sense specific electrically active components of cells. By addressing this limitation, researchers give rise to new capabilities for facilitating the two-way transduction signalling mechanisms between the electronic and cellular components. This is required to allow significant advancement of bioelectronic technology which offers new ways of treating and diagnosing diseases. Most of the progress that has been achieved to date in developing bioelectronic therapeutics stimulate neural communication, which ultimately orchestrates organ function back to a healthy state. Some devices used in therapeutics include cochlear and retinal implants and vagus nerve stimulators. However, all cells can be impacted by electrical inputs which gives rise to the opportunity to broaden the use of bioelectronic medicine for treating disease. Electronic actuation of non-excitable cells has been shown to lead to 'programmed' cell behaviour via application of electronic input which alter key biological processes. A neglected form of cellular electrical communication which has not yet been considered when developing bioelectronic therapeutics is faradaic currents. These are generated during redox reactions. A precedent of electrochemical technology being used to modulate these reactions, thereby controlling cell behaviour, has already been set. In this mini review we highlight the current state of the art of electronic routes to modulating cell behaviour and identify new ways in which electrochemistry could be used to contribute to the new field of bioelectronic medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA