Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 20(1): 381-392, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32969224

RESUMO

Inflammatory bowel disease (IBD) is a chronic, relapsing noninfectious inflammatory condition of the intestinal tract with two main phenotypes, ulcerative colitis (UC) and Crohn's disease (CD), and globally increasing incidence and prevalence. Nearly 80% of the IBD patients with active disease and 50% of those with inactive disease suffer fatigue with significant impairment of their quality of life. Fatigue has been associated with multiple factors in IBD patients but, in most cases, no direct cause can be identified, and risk factors in clinically quiescent IBD are contradictory. Furthermore, as the assessment of fatigue is subjective, there is an unmet clinical need for fatigue biomarkers. In this explorative study, we analyzed the plasma lipidomic profiles of 47 quiescent UC and CD patients (23 fatigued, 24 nonfatigued) using ultraperformance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOFMS). The results showed changes in lipids associated with fatigue and IBD. Significantly decreased levels of phosphatidylcholines, plasmanyls, sphingomyelins, lysophosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylserines, and eicosanoids were observed in patients with fatigue. Network and metabolic pathway analysis indicated a dysregulation of the arachidonic acid and glycerophospholipid metabolisms and the sphingolipid pathway. The protein-metabolite interaction network showed interactions between functionally related metabolites and proteins, displaying 40 disease-associated hidden proteins including ABDH4, GLTP, and LCAT.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Fadiga , Humanos , Lipidômica , Qualidade de Vida
2.
Metabolomics ; 16(4): 45, 2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-32222832

RESUMO

INTRODUCTION: The design of training programs for football players is not straightforward due to intra- and inter-individual variability that leads to different physiological responses under similar training loads. OBJECTIVE: To study the association between the external load, defined by variables obtained using electronic performance tracking systems (EPTS), and the urinary metabolome as a surrogate of the metabolic adaptation to training. METHODS: Urine metabolic and EPTS data from 80 professional football players collected in an observational longitudinal study were analyzed by ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry and assessed by partial least squares (PLS) regression. RESULTS: PLS models identified steroid hormone metabolites, hypoxanthine metabolites, acetylated amino acids, intermediates in phenylalanine metabolism, tyrosine, tryptophan metabolites, and riboflavin among the most relevant variables associated with external load. Metabolic network analysis identified enriched pathways including steroid hormone biosynthesis and metabolism of tyrosine and tryptophan. The ratio of players showing a deviation from the PLS model of adaptation to exercise was higher among those who suffered a muscular lesion compared to those who did not. CONCLUSIONS: There was a significant association between the external load and the urinary metabolic profile, with alteration of biochemical pathways associated with long-term adaptation to training. Future studies should focus on the validation of these findings and the development of metabolic models to identify professional football players at risk of developing muscular injuries.


Assuntos
Metabolômica , Futebol , Adolescente , Aminoácidos/metabolismo , Aminoácidos/urina , Hormônios Esteroides Gonadais/metabolismo , Hormônios Esteroides Gonadais/urina , Humanos , Hipoxantina/metabolismo , Hipoxantina/urina , Análise dos Mínimos Quadrados , Masculino , Fenilalanina/metabolismo , Fenilalanina/urina , Riboflavina/metabolismo , Riboflavina/urina , Triptofano/metabolismo , Triptofano/urina , Tirosina/metabolismo , Tirosina/urina , Adulto Jovem
3.
Front Physiol ; 13: 923608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246100

RESUMO

Professional athletes undertake a variety of training programs to enhance their physical performance, technical-tactical skills, while protecting their health and well-being. Regular exercise induces widespread changes in the whole body in an extremely complex network of signaling, and evidence indicates that phenotypical sex differences influence the physiological adaptations to player load of professional athletes. Despite that there remains an underrepresentation of women in clinical studies in sports, including football. The objectives of this study were twofold: to study the association between the external load (EPTS) and urinary metabolites as a surrogate of the adaptation to training, and to assess the effect of sex on the physiological adaptations to player load in professional football players. Targeted metabolic analysis of aminoacids, and tryptophan and phenylalanine metabolites detected progressive changes in the urinary metabolome associated with the external training load in men and women's football teams. Overrepresentation analysis and multivariate analysis of metabolic data showed significant differences of the effect of training on the metabolic profiles in the men and women teams analyzed. Collectively, our results demonstrate that the development of metabolic models of adaptation in professional football players can benefit from the separate analysis of women and men teams, providing more accurate insights into how adaptation to the external load is related to changes in the metabolic phenotypes. Furthermore, results support the use of metabolomics to understand changes in specific metabolic pathways provoked by the training process.

4.
Metabolites ; 10(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225041

RESUMO

One of the most widely used strategies for metabolite annotation in untargeted LCMS is based on the analysis of MSn spectra acquired using data-dependent acquisition (DDA), where precursor ions are sequentially selected from MS scans based on user-selected criteria. However, the number of MSn spectra that can be acquired during a chromatogram is limited and a trade-off between analytical speed, sensitivity and coverage must be ensured. In this research, we compare four different strategies for automated MS2 DDA, which can be easily implemented in the frame of standard QA/QC workflows for untargeted LC-MS. These strategies consist of (i) DDA in the MS working range; (ii) iterated DDA split into several m/z intervals; (iii) dynamic iterated DDA of (pre)selected potentially informative features; and (iv) dynamic iterated DDA of (pre)annotated metabolic features using a reference database. Their performance was assessed using the analysis of human milk samples as model example by comparing the percentage of LC-MS features selected as the precursor ion for MS2, the number, and class of annotated features, the speed and confidence of feature annotation, and the number of LC runs required.

5.
Anal Chim Acta ; 1019: 38-48, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-29625683

RESUMO

Systematic variation of the instrument's response both within- and between-batches is frequently observed in untarget LC-MS metabolomics involving the analysis of a large number of samples. The so-called batch effect decreases the statistical power and has a negative impact on repeatability and reproducibility of the results. As there is no standard way of assessing or correcting LC-MS batch effects and there is no single method providing optimal results in all situations, the selection of the optimal approach is not trivial. This work explores the effectiveness of a set of tools for batch effect assessment. Qualitative tools include the monitoring of spiked internal standards, principal component analysis and hierarchical cluster analysis. Quantitative tools comprise the distribution of RSDQC values, the median Pearson correlation coefficient in QCs, the ratio of random features in QCs using the runs test, as well as multivariate tools such as the δ-statistic, Silhouette plots, Principal Variance Component Analysis and the expected technical variation in the prediction. Results show that qualitative and quantitative approaches are complementary and that by limiting the analysis to QCs the power to detect and evaluate both within and between batch effects is increased. Besides, the graphical integration of outputs from multiple quantitative tools facilitates the evaluation of batch effects and it is proposed as a straightforward way for comparing and tailoring batch effect elimination approaches.

6.
Anal Chim Acta ; 1026: 62-68, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29852994

RESUMO

Ultra performance liquid chromatography - mass spectrometry (UPLC-MS) is increasingly being used for untargeted metabolomics in biomedical research. Complex matrices and a large number of samples per analytical batch lead to gradual changes in the instrumental response (i.e. within-batch effects) that reduce the repeatability and reproducibility and limit the power to detect biological responses. A strategy for within-batch effect correction based on the use of quality control (QC) samples and Support Vector Regression (QC-SVRC) with a radial basis function kernel was recently proposed. QC-SVRC requires the optimization of three hyperparameters that determine the accuracy of the within-batch effects elimination: the tolerance threshold (ε), the penalty term (C) and the kernel width (γ). This work compares three widely used strategies for QC-SVRC hyperparameter optimization (grid search, random search and particle swarm optimization) using a UPLC-MS data set containing 193 urine injections as model example. Results show that QC-SVRC is robust to hyperparameter selection and that a pre-selection of C and ε, followed by optimization of γ is competitive in terms of accuracy, precision and number of function evaluations with full grid analysis, random search and particle swarm optimization. The QC-SVRC optimization procedure can be regarded as a useful non-parametric tool for efficiently complementing alternative approaches such as QC-robust splines correction (RSC).


Assuntos
Algoritmos , Metabolômica , Modelos Biológicos , Controle de Qualidade , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA