Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 8(12): 1311-1315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173920

RESUMO

The authors sequenced the complete mitochondrial (mt) genomes of the band-legged ground cricket (Dianemobius fascipes nigrofasciatus Matsumura, 1904) and a temperate form of the lawn ground cricket (Polionemobius taprobanensis Walker, 1869), collected in Japan. The length of the mt genome sequences was 15,354 bp in D. fascipes nigrofasciatus and 16,063 bp in P. taprobanensis. Annotation of the mt genome sequences revealed 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. The orientation of the genes was the same as in other Grylloidea species, and the order was the same as in other Trigonidiidae species. In our phylogenetic analysis, D. fascipes nigrofasciatus formed a clade with D. fascipes collected in China, and the temperate form of P. taprobanensis formed a clade with P. taprobanensis collected in China. Comparison of the numbers of positions with different amino acid residues encoded by the protein-coding genes implied the separate species status of each member of each of the two pairs of ground crickets. The mt genome sequences of D. fascipes nigrofasciatus and P. taprobanensis will contribute to phylogenetic and taxonomic studies of the Trigonidiidae.

2.
Biophys Rev ; 14(1): 75-97, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340598

RESUMO

Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security. Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-021-00924-4.

3.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554226

RESUMO

Species of infraorder Gryllidea, or crickets, are useful invertebrate models for studying developmental biology and neuroscience. They have also attracted attention as alternative protein sources for human food and animal feed. Mitochondrial genomic information on related invertebrates, such as katydids, and locusts, has recently become available in attempt to clarify the controversial classification schemes, although robust phylogenetic relationships with emphasis on crickets remain elusive. Here, we report newly sequenced complete mitochondrial genomes of crickets to study their phylogeny, genomic rearrangements, and adaptive evolution. First, we conducted de novo assembly of mitochondrial genomes from eight cricket species and annotated protein-coding genes and transfer and ribosomal RNAs using automatic annotations and manual curation. Next, by combining newly described protein-coding genes with public data of the complete Gryllidea genomes and gene annotations, we performed phylogenetic analysis and found gene order rearrangements in several branches. We further analyzed genetic signatures of selection in ant-loving crickets (Myrmecophilidae), which are small wingless crickets that inhabit ant nests. Three distinct approaches revealed two positively selected sites in the cox1 gene in these crickets. Protein 3D structural analyses suggested that these selected sites could influence the interaction of respiratory complex proteins, conferring benefits to ant-loving crickets with a unique ecological niche and morphology. These findings enhance our understanding of the genetic basis of cricket evolution without relying on estimates based on a limited number of molecular markers.


Assuntos
Formigas , Genoma Mitocondrial , Gryllidae , Animais , Formigas/genética , Evolução Molecular , Gryllidae/genética , Insetos/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA