Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(2): 266, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602617

RESUMO

Karachi, Pakistan, is a priority site for air pollution research due to high emissions of air pollutants from vehicular traffic, industrial activities, and biomass burning, as well as rapid growth in population. The objectives of this study were to investigate the levels of gaseous pollutants (NO, NO2, O3, HNO3, and SO2) in Karachi, to determine temporal and seasonal variations, to compare Karachi's air quality with other urban centers, to identify relationships with meteorological conditions, to identify source characterization, and to perform a backward-in-time trajectory analysis and a health impact assessment. Daily samples of gaseous pollutants were collected for six consecutive weeks in each of the four seasons for a year. Daily maximum concentrations of NO (90 parts per billion by volume (ppbv)), NO2 (28.1 ppbv), O3 (57.8 ppbv), and SO2 (331 ppbv) were recorded in fall, while HNO3 (9129 parts per trillion by volume (pptv)) was recorded in spring. Seasonal average concentrations were high in winter for NO (9.47 ± 7.82 ppbv), NO2 (4.84 ± 3.35 ppbv), and O3 (8.92 ± 7.65 ppbv), while HNO3 (629 ± 1316 pptv) and SO2 (20.2 ± 39.4 ppbv) were high in spring and fall, respectively. The observed SO2 seasonal average concentration in fall (20.2 ± 39.4) was 5 times higher than that in summer (3.97 ± 2.77) with the fall 24-h average (120 ppbv) exceeding the WHO daily guideline (7.64 ppbv) by a factor of about 15.7. A health impact assessment estimated an increase of 1200 and 569 deaths due to short-term exposure to SO2 in fall and spring, respectively. Chronic daily intake estimated risk per 1000 was 0.99, 0.47, 0.45, and 0.26 for SO2 in fall, NO in winter, O3 in winter, and NO2 in spring, respectively. This study confirms the effect of poor urban air quality on public health and demonstrated the influence of photochemical reactions as well as unfavorable meteorological conditions on the formation of secondary pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Paquistão , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Dióxido de Enxofre/análise , Estações do Ano , Poluentes Ambientais/análise , Material Particulado/análise , China
2.
Sci Total Environ ; 942: 173403, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844217

RESUMO

With 24 million inhabitants and 6.6 million vehicles on the roads, Karachi, Pakistan ranks among the world's most polluted cities due to high levels of fine particulate matter (PM2.5). This study aims to investigate PM2.5 mass, seasonal and temporal variability, chemical characterization, source apportionment, and health risk assessment at two urban sites in Karachi. Samples were analyzed using ion chromatography and dual-wavelength optical transmissometer for various inorganic components (anions, cations, and trace elements) and black carbon (BC). Several PM2.5 pollution episodes were frequently observed, with annual mean concentrations at Kemari (140 ± 179 µg/m3) and Malir (95 ± 40.9 µg/m3) being significantly above the World Health Organization's guidelines of 5 µg/m3. Chemical composition at both sites exhibited seasonal variability, with higher pollution levels in winter and fall and lower concentrations in summer. The annual average BC concentrations were 4.86 ± 5.29 µg/m3 and 4.52 ± 3.68 µg/m3, respectively. A Positive Matrix Factorization (PMF) analysis identified 5 factors, crustal, sea salt, vehicular exhaust, fossil-fuel combustion, and industrial emission. The health risk assessment indicated a higher number of deaths in colder seasons (fall and winter) at the Kemari (328,794 and 287,814) and Malir (228,406 and 165,737) sites and potential non-carcinogenic and carcinogenic risks to children from metals. The non-carcinogenic risk of PM2.5 bound Pb, Fe, Zn, Mn, Cr, Cu and Ni via inhalation exposure were within the acceptable level (<1) for adults. However, potential non-carcinogenic and carcinogenic health risk posed by Pb and Cr through inhalation were observed for children. The findings exhibit critical levels of air pollution that exceed the safe limits in Karachi, posing significant health risks to children and sensitive groups. Our study underscores the urgent need for effective emission control strategies and policy interventions to mitigate these air pollution risks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Poluição do Ar/estatística & dados numéricos , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Paquistão , Medição de Risco , Cidades , Exposição Ambiental/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA