Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Basic Clin Pharmacol Toxicol ; 110(4): 359-69, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22059515

RESUMO

The fact that there is a complex and bidirectional communication between the immune and nervous systems has been well demonstrated. Lipopolysaccharide (LPS), a component of gram-negative bacteria, is widely used to systematically stimulate the immune system and generate profound physiological and behavioural changes, also known as 'sickness behaviour' (e.g. anhedonia, lethargy, loss of appetite, anxiety, sleepiness). Different ethological tools have been used to analyse the behavioural modifications induced by LPS; however, many researchers analysed only individual tests, a single LPS dose or a unique ethological parameter, thus leading to disagreements regarding the data. In the present study, we investigated the effects of different doses of LPS (10, 50, 200 and 500 µg/kg, i.p.) in young male Wistar rats (weighing 180-200 g; 8-9 weeks old) on the ethological and spatiotemporal parameters of the elevated plus maze, light-dark box, elevated T maze, open-field tests and emission of ultrasound vocalizations. There was a dose-dependent increase in anxiety-like behaviours caused by LPS, forming an inverted U curve peaked at LPS 200 µg/kg dose. However, these anxiety-like behaviours were detected only by complementary ethological analysis (stretching, grooming, immobility responses and alarm calls), and these reactions seem to be a very sensitive tool in assessing the first signs of sickness behaviour. In summary, the present work clearly showed that there are resting and alertness reactions induced by opposite neuroimmune mechanisms (neuroimmune bias) that could lead to anxiety behaviours, suggesting that misunderstanding data could occur when only few ethological variables or single doses of LPS are analysed. Finally, it is hypothesized that this bias is an evolutionary tool that increases animals' security while the body recovers from a systemic infection.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal , Medo , Lipopolissacarídeos/toxicidade , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório , Lipopolissacarídeos/administração & dosagem , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA