Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Sci Technol ; 57(41): 15627-15634, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37805932

RESUMO

Rivers are often assumed to be the main source of nutrients triggering eutrophication in the Great Barrier Reef (GBR). However, existing nutrient budgets suggest a major missing source of nitrogen and phosphorus sustaining primary production. Here, we used radium isotopes to resolve submarine groundwater discharge (SGD)-derived, shelf-scale nutrient inputs to the GBR. The total SGD was ∼10-15 times greater than average river inputs, with nearshore groundwater discharge accounting for ∼30% of this. Total SGD accounted for >30% of all known dissolved inorganic N and >60% of inorganic P inputs and exceeded regional river inputs. However, SGD was only a small proportion of the nutrients necessary to sustain primary productivity, suggesting that internal recycling processes still dominate the nutrient budget. With millions of dollars spent managing surface water nutrient inputs to reef systems globally, we argue for a shift in the focus of management to safeguard reefs from the impacts of excess nutrients.


Assuntos
Água Subterrânea , Rios , Monitoramento Ambiental , Eutrofização , Nutrientes
2.
J Environ Sci (China) ; 118: 158-170, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305765

RESUMO

Carbon dioxide (CO2) emissions from inland waters to the atmosphere are a pivotal component of the global carbon budget. Anthropogenic land use can influence riverine CO2 emissions, but empirical data exploring cause-effect relationships remain limited. Here, we investigated CO2 partial pressures (pCO2) and degassing in a monsoonal river (Yue River) within the Han River draining to the Yangtze in China. Almost 90% of river samples were supersaturated in CO2 with a mean ± standard deviation of 1474 ± 1614 µatm, leading to emissions of 557 - 971 mmol/m2/day from river water to the atmosphere. Annual CO2 emissions were 1.6 - 2.8 times greater than the longitudinal exports of riverine dissolved inorganic and organic carbon. pCO2 was positively correlated to anthropogenic land use (urban and farmland), and negatively correlated to forest cover. pCO2 also had significant and positive relationships with total dissolved nitrogen and total dissolved phosphorus. Stepwise multiple regression models were developed to predict pCO2. Farmland and urban land released nutrients and organic matter to the river system, driving riverine pCO2 enrichment due to enhanced respiration in these heterotrophic rivers. Overall, we show the crucial role of land use driving riverine pCO2, which should be considered in future large-scale estimates of CO2 emissions from streams. Land use change can thus modify the carbon balance of urban-river systems by enhancing river emissions, and reforestation helps carbon neutral in rivers.


Assuntos
Dióxido de Carbono , Rios , Atmosfera , Água Doce , Nitrogênio
3.
Environ Sci Technol ; 55(12): 8432-8438, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34086455

RESUMO

Tropical urbanized coastal regions are hotspots for the discharge of nutrient-enriched groundwater, which can affect sensitive coastal ecosystems. Here, we investigated how a beach modifies groundwater nutrient loads in southern India (Varkala Beach), using flux measurements and stable isotopes. Fresh groundwater was highly enriched in NO3 from sewage or manure. Submarine groundwater discharge and nearshore groundwater discharge were equally important contributors to coastal NO3 fluxes with 303 mmol NO3 m-1 day-1 in submarine and 334 mmol NO3 m-1 day-1 in nearshore groundwater discharge. However, N/P ratios in nearshore groundwater discharge were up to 3 orders of magnitude greater than that in submarine groundwater, which can promote harmful algae blooms. As groundwater flowed through the beach, N/P ratios decreased toward Redfield ratios due to the removal of 30-50% of NO3 due to denitrification and production of PO4 due to mineralization of organic matter. Overall, tropical beaches can be important natural biogeochemical reactors that attenuate nitrogen pollution and modify N/P ratios in submarine groundwater discharge.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Índia , Nitrogênio/análise , Oceanos e Mares , Poluentes Químicos da Água/análise
4.
Environ Geochem Health ; 43(8): 3189-3211, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33534097

RESUMO

Industrial horticulture can release pesticides and trace metals/metalloids to terrestrial and aquatic environments. To assess long-term and more recent land contamination from an expanding horticultural region, we sampled soils from chemical mixing, crop production, and drainage areas, as well as retention reservoirs (dam) sediments, from 3 blueberry farms with varying land-use history in subtropical Australia. Soils were analysed for 97 different pesticides and trace metal/metalloid contents. The most recent farm had fungicides propiconazole and cyprodinil contents that may compromise soil invertebrate survival and/or nutrient recycling (5-125 mg kg-1). A site previously used to cultivate bananas had 6 dam sediment subsamples with arsenic contents over sediment quality guidelines (SQG); however, the soil content values were just below Australian health investigation levels (100 mg kg-1). Arsenic is suspected to originate from pesticide application during previous banana cultivation in the region. Dam sediment cores at all sites had mercury contents over the SQG likely due to fungicides or fertiliser impurities. Mean contents of mercury from dam sediments (141 ± 15.5 µg kg-1) were greater than terrestrial soils (78 ± 6.5 µg kg-1), and sediment profiles suggest mercury retention in anoxic sediments. Soils in chemical mixing areas at two sites were contaminated with copper and zinc which were above the national soil ecological investigation levels. Based on toxicity data, distribution, persistence, and mobility, we identified the fungicide cyprodinil, mercury, and phosphorus as contaminants of the greatest concern in this intensive horticulture area of Australia. Additional sampling (spatial, chemical speciation, biotic) is required to support mitigation efforts of the emerging contamination in the rapidly expanding blueberry farms of this region of Australia.


Assuntos
Solo , Arsênio/análise , Austrália , Monitoramento Ambiental , Sedimentos Geológicos , Horticultura , Praguicidas , Poluentes Químicos da Água/análise
6.
Biol Lett ; 14(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30021861

RESUMO

The blue carbon paradigm has evolved in recognition of the high carbon storage and sequestration potential of mangrove, saltmarsh and seagrass ecosystems. However, fluxes of the potent greenhouse gases CH4 and N2O, and lateral export of carbon are often overlooked within the blue carbon framework. Here, we show that the export of dissolved inorganic carbon (DIC) and alkalinity is approximately 1.7 times higher than burial as a long-term carbon sink in a subtropical mangrove system. Fluxes of methane offset burial by approximately 6%, while the nitrous oxide sink was approximately 0.5% of burial. Export of dissolved organic carbon and particulate organic carbon to the coastal zone is also significant and combined may account for an atmospheric carbon sink similar to burial. Our results indicate that the export of DIC and alkalinity results in a long-term atmospheric carbon sink and should be incorporated into the blue carbon paradigm when assessing the role of these habitats in sequestering carbon and mitigating climate change.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Áreas Alagadas , Carbono/análise , Metano/análise , Óxido Nitroso/análise , Queensland
7.
Environ Sci Technol ; 51(23): 13771-13778, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29116768

RESUMO

Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO2 and N2O concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon (222Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH4 showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO2 equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while N2O contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.


Assuntos
Estuários , Gases de Efeito Estufa , Austrália , Dióxido de Carbono , Efeito Estufa , Metano , Óxido Nitroso , Radônio , Análise Espectral
8.
Environ Sci Technol ; 47(7): 3099-104, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23444905

RESUMO

Atmospheric radon ((222)Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). (222)Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both (222)Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations. Average CO2 concentrations over the 24-h period ranged from ~390 ppm at the control site to ~467 ppm near the center of the gas field. A ~3 fold increase in maximum (222)Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average (222)Rn concentrations and the number of gas wells within a 3 km radius of the sampling sites (n = 5 stations; p < 0.05). A positive trend was observed between CO2 concentrations and the number of CSG wells, but the relationship was not statistically significant. We hypothesize that the radon relationship was a response to enhanced emissions within the gas field related to both point (well heads, pipelines, etc.) and diffuse soil sources. Radon may be useful in monitoring enhanced soil gas fluxes to the atmosphere due to changes in the geological structure associated with wells and hydraulic fracturing in CSG fields.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Carvão Mineral/análise , Campos de Petróleo e Gás/química , Radônio/análise , Geografia , Modelos Teóricos , Queensland , Análise de Regressão , Fatores de Tempo
9.
Environ Sci Technol ; 47(22): 12938-45, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24131451

RESUMO

Development of cavity ring-down spectroscopy (CRDS) has enabled real-time monitoring of carbon stable isotope ratios of carbon dioxide and methane in air. Here we demonstrate that CRDS can be adapted to assess aquatic carbon cycling processes from microbial to ecosystem scales. We first measured in situ isotopologue concentrations of dissolved CO2 ((12)CO2 and (13)CO2) and CH4 ((12)CH4 and (13)CH4) with CRDS via a closed loop gas equilibration device during a survey along an estuary and during a 40 h time series in a mangrove creek (ecosystem scale). A similar system was also connected to an in situ benthic chamber in a seagrass bed (community scale). Finally, a pulse-chase isotope enrichment experiment was conducted by measuring real-time release of (13)CO2 after addition of (13)C enriched phytoplankton to exposed intertidal sediments (microbial scale). Miller-Tans plots revealed complex transformation pathways and distinct isotopic source values of CO2 and CH4. Calculations of δ(13)C-DIC based on CRDS measured δ(13)C-CO2 and published fractionation factors were in excellent agreement with measured δ(13)C-DIC using isotope ratio mass spectroscopy (IRMS). The portable CRDS instrumentation used here can obtain real-time, high precision, continuous greenhouse gas data in lakes, rivers, estuaries and marine waters with less effort than conventional laboratory-based techniques.


Assuntos
Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Ciclo do Carbono , Ecossistema , Análise Espectral/métodos , Austrália , Dióxido de Carbono/análise , Isótopos de Carbono , Estuários , Modelos Lineares , Espectrometria de Massas , Metano/análise , Fitoplâncton/metabolismo , Fatores de Tempo
10.
Sci Total Environ ; 873: 162175, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801407

RESUMO

Coastal blue carbon habitats perform many important environmental functions, including long-term carbon and anthropogenic contaminant storage. Here, we analysed twenty-five 210Pb-dated mangrove, saltmarsh, and seagrass sediment cores from six estuaries across a land-use gradient to determine metal, metalloid, and phosphorous sedimentary fluxes. Cadmium, arsenic, iron, and manganese had linear to exponential positive correlations between concentrations, sediment flux, geoaccumulation index, and catchment development. Increases in anthropogenic development (agricultural or urban land uses) from >30 % of the total catchment area enhanced mean concentrations of arsenic, copper, iron, manganese, and zinc between 1.5 and 4.3-fold. A ~ 30 % anthropogenic land-use was the threshold in which blue carbon sediment quality begins to be detrimentally impacted on an entire estuary scale. Fluxes of phosphorous, cadmium, lead, and aluminium responded similarly, increasing 1.2 to 2.5-fold when anthropogenic land-use increased by at least 5 %. Exponential increases in phosphorus flux to estuary sediments seem to precede eutrophication as observed in more developed estuaries. Overall, multiple lines of evidence revealed how catchment development drives blue carbon sediment quality across a regional scale.

11.
Innovation (Camb) ; 4(5): 100481, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37636281

RESUMO

To achieve the Paris Agreement, China pledged to become "Carbon Neutral" by the 2060s. In addition to massive decarbonization, this would require significant changes in ecosystems toward negative CO2 emissions. The ability of coastal blue carbon ecosystems (BCEs), including mangrove, salt marsh, and seagrass meadows, to sequester large amounts of CO2 makes their conservation and restoration an important "nature-based solution (NbS)" for climate adaptation and mitigation. In this review, we examine how BCEs in China can contribute to climate mitigation. On the national scale, the BCEs in China store up to 118 Tg C across a total area of 1,440,377 ha, including over 75% as unvegetated tidal flats. The annual sedimental C burial of these BCEs reaches up to 2.06 Tg C year-1, of which most occurs in salt marshes and tidal flats. The lateral C flux of mangroves and salt marshes contributes to 1.17 Tg C year-1 along the Chinese coastline. Conservation and restoration of BCEs benefit climate change mitigation and provide other ecological services with a value of $32,000 ha-1 year-1. The potential practices and technologies that can be implemented in China to improve BCE C sequestration, including their constraints and feasibility, are also outlined. Future directions are suggested to improve blue carbon estimates on aerial extent, carbon stocks, sequestration, and mitigation potential. Restoring and preserving BCEs would be a cost-effective step to achieve Carbon Neutral by 2060 in China despite various barriers that should be removed.

12.
Nat Commun ; 14(1): 8196, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081846

RESUMO

Mangroves and saltmarshes are biogeochemical hotspots storing carbon in sediments and in the ocean following lateral carbon export (outwelling). Coastal seawater pH is modified by both uptake of anthropogenic carbon dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we investigate how mangroves and saltmarshes influence coastal carbonate chemistry and quantify the contribution of alkalinity and dissolved inorganic carbon (DIC) outwelling to blue carbon budgets. Observations from 45 mangroves and 16 saltmarshes worldwide revealed that >70% of intertidal wetlands export more DIC than alkalinity, potentially decreasing the pH of coastal waters. Porewater-derived DIC outwelling (81 ± 47 mmol m-2 d-1 in mangroves and 57 ± 104 mmol m-2 d-1 in saltmarshes) was the major term in blue carbon budgets. However, substantial amounts of fixed carbon remain unaccounted for. Concurrently, alkalinity outwelling was similar or higher than sediment carbon burial and is therefore a significant but often overlooked carbon sequestration mechanism.

13.
Environ Sci Technol ; 46(14): 7685-91, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22694256

RESUMO

Groundwater discharge could be a major, but as yet poorly constrained, source of carbon dioxide to lakes, wetlands, rivers, estuaries, and coastal waters. We demonstrate how coupled radon ((222)Rn, a natural groundwater tracer) and pCO(2) measurements in water can be easily performed using commercially available gas analysers. Portable, automated radon and pCO(2) gas analysers were connected in series and a closed air loop was established with gas equilibration devices (GED). We experimentally assessed the advantages and disadvantages of six GED. Response times shorter than 30 min for (222)Rn and 5 min for pCO(2) were achieved. Field trials revealed significant positive correlations between (222)Rn and pCO(2) in estuarine waterways and in a mangrove tidal creek, implying that submarine groundwater discharge was a source of CO(2) to surface water. The described system can provide high resolution, high precision concentrations of both radon and pCO(2) with nearly no additional effort compared to measuring only one of these gases. Coupling automated (222)Rn and pCO(2) measurements can provide new insights into how groundwater seepage contributes to aquatic carbon budgets.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Monitoramento Ambiental/métodos , Radônio/análise , Água do Mar/química , Poluentes Radioativos da Água/análise , Austrália , Automação , Sulfato de Cálcio/química , Coleta de Dados , Dessecação , Fatores de Tempo , Incerteza , Movimentos da Água
14.
Environ Technol ; : 1-13, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36322116

RESUMO

Drones are revolutionising earth system observations, and are increasingly used for high resolution monitoring of water quality. The objective of this research was to test whether drone-based multispectral imagery could predict important water quality parameters in an ICOLL (intermittently closed and opened lake or lagoon). Three water quality sampling campaigns were undertaken, measuring temperature, salinity, pH, dissolved oxygen (DO), chlorophyll (CHL), turbidity, total suspended sediments (TSS), coloured dissolved organic matter (CDOM), green algae, crytophyta, diatoms, bluegreen algae and total algal concentrations. DistilM statistical analyses were conducted to reveal the bands accounting for the most variation across all water quality data, then linear correlations between specific band/band ratios and individual water quality parameters were performed. DistilM analyses revealed the NIR band accounted for most variation in March, the Green band in April and the RE band in May, and showed that the most important contributors varied significantly among campaigns and variables. Significant linear correlations with R2 > 0.4 were obtained for eleven of the water quality parameters tested, with the strongest correlation obtained for CHL and the green band (R2 = 0.72). The relative importance of predictor bands and observed water quality parameters varied temporally. We conclude that drones with a multispectral sensor can produce useful 'snapshot' prediction maps for a range of water quality parameters, such as chlorophyll, bluegreen algae and dissolved oxygen. However, a single model was insufficient to reproduce the temporal variation of water parameters in dynamic estuarine systems.

15.
Sci Total Environ ; 832: 154900, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367545

RESUMO

Mangrove forests sequester organic carbon, nutrients and toxic metals sorbed to fine sediment, and thus restrict the mobility of pollutants through estuarine environments. However, mangrove removal and environmental degradation caused by industrial activity and urban growth can impact the ability of mangrove communities to provide these critical ecosystem services. Here, we use sediment profiles from an impacted tropical estuary in southwest India to provide a c. 70-year record of carbon, nutrient and trace metal burial in the context of rapid urban development and the systemic removal of mangrove communities. Our results show that carbon and nutrient accumulation rates increase sharply during the 1990's in accordance with the high rates of deforestation. Nitrogen and phosphorus accumulation rates increased fourfold and twofold, respectively, during the same period. Organic carbon accumulation was fivefold higher than the global average during this period, reflecting intense deforestation during the last three decades. The enrichment of Hg, Zn, Pb, Mo, Ni, Cu and Mn demonstrate clear anthropogenic impact starting in the 1950's and peaking in 1990. Mercury, the trace metal with the highest enrichment factor, increased sevenfold in the most recent sediments due to increased fossil fuel emissions, untreated water and incineration of medical waste and/or fertilizers used in aquaculture. Organic carbon isotope (δ13C) and C:N molar ratios indicate shifts to more terrestrial-derived source of organic matter in the most recent sediments reflecting growing deforestation of which may be prevalent in southeast Asia due to increasing development. This study emphasizes the critical role played by mangrove ecosystems in attenuating anthropogenically-derived pollutants, including carbon sequestration, and reveals the long-term consequences of mangrove deforestation in the context of rapidly developing economies.


Assuntos
Mercúrio , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Ásia , Carbono/análise , Ecossistema , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos , Mercúrio/análise , Metais Pesados/análise , Nutrientes , Oligoelementos/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
16.
Sci Rep ; 12(1): 14121, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986014

RESUMO

The perceived and real threat of shark bites have significant direct health and indirect economic impacts. Here we assess the changing odds of surviving an unprovoked shark bite using 200 years of Australian records. Bite survivability rates for bull (Carcharhinus leucas), tiger (Galeocerdo cuvier) and white (Carcharodon carcharias) sharks were assessed relative to environmental and anthropogenic factors. Survivability of unprovoked bull, tiger and white shark bites were 62, 75 and 53% respectively. Bull shark survivability increased over time between 1807 and 2018. Survivability decreased for both tiger and white sharks when the person was doing an in water activity, such as swimming or diving. Not unsurprisingly, a watercraft for protection/floatation increased survivability to 92% from 30%, and 88% from 45%, for tiger and white sharks respectively. We speculate that survival may be related to time between injury and treatment, indicating the importance of rapid and appropriate medical care. Understanding the predictors of unprovoked bites, as well as survivability (year and water activity), may be useful for developing strategies that reduce the number of serious or fatal human-shark interactions without impacting sharks and other marine wildlife.


Assuntos
Mordeduras e Picadas , Tubarões , Animais , Austrália , Humanos , Água
17.
Nat Commun ; 13(1): 2153, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444183

RESUMO

Groundwater comprises 95% of the liquid fresh water on Earth and contains a diverse mix of dissolved organic matter (DOM) molecules which play a significant role in the global carbon cycle. Currently, the storage times and degradation pathways of groundwater DOM are unclear, preventing an accurate estimate of groundwater carbon sources and sinks for global carbon budgets. Here we reveal the transformations of DOM in aging groundwater using ultra-high resolution mass spectrometry combined with radiocarbon dating. Long-term anoxia and a lack of photodegradation leads to the removal of oxidised DOM and a build-up of both reduced photodegradable formulae and aerobically biolabile formulae with a strong microbial signal. This contrasts with the degradation pathway of DOM in oxic marine, river, and lake systems. Our findings suggest that processes such as groundwater extraction and subterranean groundwater discharge to oceans could result in up to 13 Tg of highly photolabile and aerobically biolabile groundwater dissolved organic carbon released to surface environments per year, where it can be rapidly degraded. These findings highlight the importance of considering groundwater DOM in global carbon budgets.


Assuntos
Matéria Orgânica Dissolvida , Água Subterrânea , Carbono/análise , Lagos/química
18.
Environ Pollut ; 300: 118814, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063543

RESUMO

Nitrogen loss via overland flow from agricultural land use is a global threat to waterways. On-farm denitrifying woodchip bioreactors can mitigate NO3- exports by increasing denitrification capacity. However, denitrification in sub-optimal conditions releases the greenhouse gas nitrous oxide (N2O), swapping the pollution from aquatic to atmospheric reservoirs. Here, we assess NO3--N removal and N2O emissions from a new edge-of-field surface-flow bioreactor during ten rain events on intensive farming land. Nitrate removal rates (NRR) varied between 5.4 and 76.2 g NO3--N m-3 wetted woodchip d-1 with a mean of 30.3 ± 7.3 g NO3--N m-3. The nitrate removal efficiency (NRE) was ∼73% in ideal hydrological conditions and ∼18% in non-ideal conditions. The fraction of NO3--N converted to N2O (rN2O) in the bioreactor was ∼3.3 fold lower than the expected 0.75% IPCC emission factor. We update the global bioreactor estimated Q10 (NRR increase every 10 °C) from a recent meta-analysis with previously unavailable data to >20 °C, yielding a new global Q10 factor of 3.1. Mean N2O CO2-eq emissions (431.9 ± 125.4 g CO2-eq emissions day-1) indicate that the bioreactor was not significantly swapping aquatic NO3- for N2O pollution. Our estimated NO3--N removal from the bioreactor (9.9 kg NO3--N ha-1 yr-1) costs US$13.14 per kg NO3--N removed and represents ∼30% NO3--N removal when incorporating all flow and overflow events. Overall, edge-of-field surface-flow bioreactors seem to be a cost-effective solution to reduce NO3--N runoff with minor pollution swapping to N2O.


Assuntos
Nitratos , Óxido Nitroso , Reatores Biológicos , Desnitrificação , Nitrogênio
19.
Nat Commun ; 13(1): 4903, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987905

RESUMO

The sediment-water interface in the coastal ocean is a highly dynamic zone controlling biogeochemical fluxes of greenhouse gases, nutrients, and metals. Processes in the sediment mixed layer (SML) control the transfer and reactivity of both particulate and dissolved matter in coastal interfaces. Here we map the global distribution of the coastal SML based on excess 210Pb (210Pbex) profiles and then use a neural network model to upscale these observations. We show that highly dynamic regions such as large estuaries have thicker SMLs than most oceanic sediments. Organic carbon preservation and SMLs are inversely related as mixing stimulates oxidation in sediments which enhances organic matter decomposition. Sites with SML thickness >60 cm usually have lower organic carbon accumulation rates (<50 g C m-2 yr-1) and total organic carbon/specific surface area ratios (<0.4 mg m-2). Our global scale observations reveal that reworking can accelerate organic matter degradation and reduce carbon storage in coastal sediments.


Assuntos
Carbono , Poluentes Químicos da Água , Carbono/química , Monitoramento Ambiental , Sedimentos Geológicos/química , Chumbo , Oceanos e Mares , Água
20.
Sci Total Environ ; 813: 151889, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34826491

RESUMO

Mangroves under macro-tidal regimes are global carbon sequestration hotspots but the microbial drivers of biogeochemical cycles remain poorly understood. Here, we investigate the drivers of mangrove microbial community composition across a porewater-creek-estuary-ocean continuum. Observations were performed on the Amazon region in one of the largest mangrove systems worldwide with effective sequestration of organic carbon buried in soils and dissolved carbon via outwelling to the ocean. The potential export to the adjacent oceanic region ranged from 57 to 380 kg of dissolved and particulate organic carbon per second (up to 33 thousand tons C per day). Macro tides modulated microbial communities and their metabolic processes, e.g., anoxygenic phototrophy, sulfur, and nitrogen cycling. Respiration, sulfur metabolism and dissolved organic carbon (DOC) levels were linked to functional groups and microbial cell counts. Total microbial counts decreased and cyanobacteria counts peaked in the spring tide. The microbial groups driving carbon, nitrogen, sulfur and methane cycles were consistent across all spatial scales. Taxonomic groups engaged in sulfur cycling (Allochromatium, Desulfovibrio, and Thibacillus) within mangroves were abundant at all scales. Tidally-driven porewater exchange within mangroves drove a progressive increase of sulfur cycle taxonomic groups and their functional genes both temporally (tidal cycles) and spatially (from mangrove porewater to continental shelf). Overall, we revealed a unified and consistent response of microbiomes at different spatial and temporal scales to tidally-driven mangrove porewater exchange.


Assuntos
Microbiota , Carbono , Estuários , Nitrogênio , Enxofre , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA