RESUMO
From 2012, the preservation of food products under pressure has been increasingly studied and the knowledge acquired has enlarged since several food products have been studied at different storage conditions. This new food preservation methodology concept called Hyperbaric Storage (HS) has gain relevance due to its potential as a replacement or an improvement to the conventional cold storage processes, such as the traditional refrigeration (RF), or even frosting, from the energetic savings to the reduction of the carbon foot-print. Briefly, HS is capable to inhibit the microbial proliferation or its inactivation which results in the extension of the shelf-life of several food products when compared to RF. Moreover, the overall quality parameters seem not to be affected by HS, being the differences detected on samples over storage similar to lower when compared to the ones stored at RF. This review paper aims to gather data from all studies carried out so far regarding HS performance, mainly at room temperature on fruit juices, meat and fisheries, as well on dairy products and ready-to-eat meals. The HS advantages as a new food preservation methodology are presented and explained, being also discussed the industrial viability and environmental impact of this methodology, as well its limitations.
Assuntos
Armazenamento de Alimentos , Refrigeração , Microbiologia de Alimentos , Conservação de Alimentos , Carne/análise , TemperaturaRESUMO
BACKGROUND: This work aimed to compare raw fresh meat (minced bovine and pork in pieces) preserved by hyperbaric storage (HS) at room-like temperature (75 MPa/25 °C) and HS at cold temperatures (60 MPa/10 °C) for up to 60 days, being both compared to refrigeration (RF, 4 °C). RESULTS: HS conditions showed microbial load reductions over 60 days of storage, leading to a possible shelf-life extension when compared to samples at RF. Moreover, between both HS conditions similar results were found at the 60th day, reaching in some cases values < 1.00 log CFU g-1 . Overall, pH presented an increase with storage for both HS conditions (e.g. over 30 days, from 5.51 ± 0.02 to 5.70 ± 0.01 and 5.85 ± 0.03, for 60 MPa/10 °C and 75 MPa/25 °C, respectively, on pork meat in pieces, PP) contrary to RF where pH values decreased (from 5.51 ± 0.02 to 5.33 ± 0.03). Regarding moisture content and drip loss, lower and higher values were found, respectively at 75 MPa/25 °C, mainly in bovine minced meat. Overall, colour ΔE* did not present considerable differences for both samples under all storage conditions. Lipid oxidation presented an increase tendency over time, with both HS conditions showing the higher values (1.795 ± 0.217 and 2.169 ± 0.117 for 60 MPa/10 °C and 75 MPa/25 °C, respectively, compared to 0.895 ± 0.084 µg MDA g-1 in PP samples at the 30th day). CONCLUSION: Although several advantages were found further studies should be carried out in order to optimize the HS conditions for raw fresh meat and assess the impact of this preservation methodology on other meat quality parameters as for instance sensorial aspects. © 2019 Society of Chemical Industry.
Assuntos
Conservação de Alimentos/métodos , Carne/análise , Refrigeração/métodos , Animais , Bovinos , Temperatura Baixa , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Lipídeos/química , Oxirredução , Refrigeração/instrumentação , SuínosRESUMO
Hyperbaric storage (HS) at variable room temperature (RT) has been proposed as an alternative to refrigeration at atmospheric pressure (RF/AP) for food preservation. Little information is available regarding the effect of HS in meat products. In this study the RT/HS effect was evaluated at 100 MPa and variable RT (≈20 °C) for minced meat preservation up to 24 h, initially for one batch. A further two different batches were studied independently. Microbiological and physicochemical parameters were analyzed to assess the feasibility of RT/HS, using storage at RF/AP and variable RT/AP (≈20 °C), for comparison. A post-hyperbaric storage (post-HS) was also tested over 4 days at RF/AP. For the first batch the results showed that RT/HS allowed a decrease of the total aerobic mesophile value (P < 0.05) when compared to the initial sample, whereas at RF/AP and RT/AP, values increased to > 6 Log CFU g-1 after 24 h. Similarly, Enterobacteriaceae increased > 1 and > 2 Log CFU g-1 at RF/AP and RT/AP, respectively, while yeasts and molds presented similar and lower overall loads compared to the initial samples for all storage conditions, whereas RT/HS always allowed lower counts to be obtained. Regarding pH, lipid oxidation, and color parameters, RT/HS did not cause significant changes when compared to RF/AP, except after 24 h, where pH increased. The three batches presented similar results, the differences observed being mainly due to the heterogeneity of the samples. RT/HS is a potential quasi-energetic costless alternative to RF for at least short-term preservation of minced meat. © 2018 Society of Chemical Industry.
Assuntos
Conservação de Alimentos/métodos , Produtos da Carne/análise , Refrigeração/métodos , Animais , Enterobacteriaceae/crescimento & desenvolvimento , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Produtos da Carne/microbiologia , Oxirredução , Suínos , Temperatura , Leveduras/crescimento & desenvolvimentoRESUMO
The effect of hyperbaric storage on Bacillus subtilis endospores, as a new food preservation methodology with potential to replace the conventional refrigeration processes, was assessed and compared to refrigeration. To do so, three different matrices (McIlvaine buffer, carrot juice and brain-heart infusion broth, BHI-broth) were inoculated with B. subtilis endospores and stored at 25, 50 and 100â¯MPaâ¯at variable/uncontrolled room temperature (18-23⯰C), under refrigeration (4⯰C), and room temperature at atmospheric pressure (0.1â¯MPa), up to 60 days. Two different quantification procedures were performed to assay both vegetative and endospores (unheated samples) and endospores (heated samples), to assess germination under pressure. The results showed that hyperbaric storage yielded pronounced endospore loads reductions in carrot juice and BHI-broth at 50 and 100â¯MPa, while in McIlvaine buffer, lower endospore loads reductions were observed. At 25â¯MPa, the endospores germinated and outgrew in carrot juice. Under refrigeration conditions, both carrot juice and BHI-broth underwent endospore germination and outgrowth after 60 and 9 days of storage, respectively, while in McIlvaine buffer there were no endospore outgrowth. These results suggest that hyperbaric storage at room temperature might not only be a feasible preservation procedure regarding endospores, but also that the food product (matrix characteristics) seems to influence the microbial inactivation that occurs during hyperbaric storage.
Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Armazenamento de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Viabilidade Microbiana , Pressão , Refrigeração , Esporos Bacterianos/crescimento & desenvolvimento , Temperatura , Carga Bacteriana , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Meios de Cultura , Daucus carota/microbiologia , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Germinação , Temperatura AltaRESUMO
INTRODUCTION: The neutrophil-to-lymphocyte ratio (NLR) is a biological marker that has been shown to be associated with outcomes in patients with a number of different malignancies. The objective of this study was to assess the relationship between NLR and mortality in a population of adult critically ill patients. METHODS: We performed an observational cohort study of unselected intensive care unit (ICU) patients based on records in a large clinical database. We computed individual patient NLR and categorized patients by quartile of this ratio. The association of NLR quartiles and 28-day mortality was assessed using multivariable logistic regression. Secondary outcomes included mortality in the ICU, in-hospital mortality and 1-year mortality. An a priori subgroup analysis of patients with versus without sepsis was performed to assess any differences in the relationship between the NLR and outcomes in these cohorts. RESULTS: A total of 5,056 patients were included. Their 28-day mortality rate was 19%. The median age of the cohort was 65 years, and 47% were female. The median NLR for the entire cohort was 8.9 (interquartile range, 4.99 to 16.21). Following multivariable adjustments, there was a stepwise increase in mortality with increasing quartiles of NLR (first quartile: reference category; second quartile odds ratio (OR) = 1.32; 95% confidence interval (CI), 1.03 to 1.71; third quartile OR = 1.43; 95% CI, 1.12 to 1.83; 4th quartile OR = 1.71; 95% CI, 1.35 to 2.16). A similar stepwise relationship was identified in the subgroup of patients who presented without sepsis. The NLR was not associated with 28-day mortality in patients with sepsis. Increasing quartile of NLR was statistically significantly associated with secondary outcome. CONCLUSION: The NLR is associated with outcomes in unselected critically ill patients. In patients with sepsis, there was no statistically significant relationship between NLR and mortality. Further investigation is required to increase understanding of the pathophysiology of this relationship and to validate these findings with data collected prospectively.
Assuntos
Estado Terminal/mortalidade , Mortalidade Hospitalar , Contagem de Linfócitos , Neutrófilos , Idoso , Estudos de Coortes , Feminino , Humanos , Unidades de Terapia Intensiva , Contagem de Leucócitos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Medição de RiscoRESUMO
The effects of different alkyl chain lengths of ionic liquids 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium chloride, on the catalytic activity, thermal stability and deactivation kinetics of horseradish peroxidase were studied in the temperature range of 45-85 °C. The presence of 1-ethyl- and 1-butyl-ionic liquids up to 25% (w/v) did not affect significantly the enzyme activity at 25 °C, whereas the addition of 1-hexyl-solvent resulted in lower activity of enzyme. Typical biphasic deactivation profiles were obtained and adequately fitted by a bi-exponential equation. When increasing ionic liquids concentration up to 25% (w/v), the second phase of deactivation became more prominent, till leading to apparent first-order kinetics. Occurrence of activity regain, following thermal deactivation was found, reaching up 60-80% of the initial activity, especially in 1-hexyl-3-methylimidazolium chloride. Activity regain was particularly noticeable in the first phase of deactivation. Temperature sensitivity of the Soret band maxima indicated that the enzyme prepared in buffer or 1-hexyl-3-methylimidazolium chloride had similar conformational changes in the haem region, but no correlations were found with activity decrease.
Assuntos
Inibidores Enzimáticos/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Imidazóis/metabolismo , Líquidos Iônicos/metabolismo , TemperaturaRESUMO
BACKGROUND: Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. RESULTS: We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1) digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb) to 157 Kb (Eg_Ba), very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. CONCLUSIONS: The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×), contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae, including genome sequencing, gene isolation, functional and comparative genomics. Because they have been constructed using the same tree (E. grandis BRASUZ1) whose full genome is being sequenced, they should prove instrumental for assembly and gap filling of the upcoming Eucalyptus reference genome sequence.
Assuntos
Eucalyptus/genética , Biblioteca Gênica , Genoma de Planta , Genômica/métodos , Lignina/biossíntese , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Genoma de Cloroplastos , Lignina/genética , Anotação de Sequência Molecular , Análise de Sequência de DNARESUMO
The challenges presented by the Coronavirus disease 2019 (COVID-19) pandemic to the National Health Service (NHS) in the United Kingdom (UK) led to a rapid adaptation of infection disease protocols in-hospital. In this paper we report on the optimisation of our wearable ambulatory monitoring system (AMS) to monitor COVID-19 patients on isolation wards. A wearable chest patch (VitalPatch®, VitalConnect, United States of America, USA) and finger-worn pulse oximeter (WristOx2® 3150, Nonin, USA) were used to estimate and transmit continuous Heart Rate (HR), Respiratory Rate (RR), and peripheral blood Oxygen Saturation (SpO2) data from ambulatory patients on these isolation wards to nurse bays remote from these patients, with a view to minimising the risk of infection for nursing staff. Our virtual High-Dependency Unit (vHDU) system used a secure web-based architecture and protocols (HTTPS and encrypted WebSockets) to transmit the vital-sign data in real time from wireless Android tablet devices, operating as patient data collection devices by the bedside in the isolation rooms, into the clinician dashboard interface available remotely via any modern web-browser. Fault-tolerant software strategies were used to reconnect the wearables automatically, avoiding the need for nurses to enter the isolation ward to re-set the patient monitoring equipment. The remote dashboard also displayed the vital-sign observations recorded by the nurses, using a separate electronic observation system, allowing them to review both sources of vital-sign data in one integrated chart. System usage was found to follow the trend of the number of local COVID-19 infections during the first wave of the pandemic in the UK (March to June 2020), with almost half of the patients on the isolation ward monitored with wearables during the peak of hospital admissions in the local area. Patients were monitored for a median of 31.5 [8.8, 75.4] hours, representing 88.1 [62.5, 94.5]% of the median time they were registered in the system. This indicates the system was being used in the isolation ward during this period. An updated version of the system has now also been used throughout the second and third waves of the pandemic in the UK.
RESUMO
Hyperbaric storage (HS) of raw watermelon juice, up to 10days at 50, 75, and 100MPa at variable/uncontrolled room temperature (18-23°C, RT) was studied and compared with storage at atmospheric pressure (AP) under refrigeration (4°C, RF) and RT, being evaluated microbiological (endogenous and inoculated), physicochemical parameters, and enzymatic activities. Ten days of storage at 50MPa resulted in a microbial growth evolution similar to RF, while at 75/100MPa were observed microbial load reductions on endogenous and inoculated microorganisms (Escherichia coli and Listeria innocua, whose counts were reduced to below the detection limit of 1.00 log CFU/mL), resulting in a shelf-life extension compared to RF. The physicochemical parameters remained stable at 75MPa when compared to the initial raw juice, except for browning degree that increased 1.72-fold, whilst at 100MPa were observed higher colour variations, attributed to a lycopene content decrease (25%), as well as reductions on peroxidase residual activity (16.8%) after 10days, while both polyphenol oxidase and pectin methylesterase residual activities were similar to RF. These outcomes hint HS as a reliable alternative to RF as a new food preservation methodology, allowing energy savings and shelf-life extension of food products. This is the first paper studying the effect of HS on inoculated microorganisms and on a broad number of physicochemical parameters and on endogenous enzymatic activities, for a preservation length surpassing the shelf-life by RF.
Assuntos
Citrullus , Temperatura Baixa , Enzimas/análise , Escherichia coli/crescimento & desenvolvimento , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Armazenamento de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Oxigenoterapia Hiperbárica , Listeria/crescimento & desenvolvimento , Carga Bacteriana , Hidrolases de Éster Carboxílico/análise , Catecol Oxidase/análise , Peroxidase/análise , Fatores de TempoRESUMO
In this work bleached E. globulus kraft pulp was doped with polyhexamethylene biguanide (PHMB) from an aqueous solution or from a suspension of silica capsules (PHMB@silica) by impregnation under atmospheric or ultra-high pressure (UHP) conditions (500MPa). The antimicrobial properties of pulps were evaluated towards gram-negative E. coli and gram-positive L. innocua bacteria. PHMB loads below 500mg per kg of pulp revealed negligible bacteriostatic properties, whereas PHMB loads of ca 3000-4000mg per kg demonstrated bactericidal properties of pulp without significant deterioration of its mechanical strength. The UHP impregnation allowed significant improvement of PHMB uptake. Thus, under equal conditions, PHMB uptake was ca 25% greater under UHP than under atmospheric pressure impregnation, whereas the leachable amounts of PHMB in both pulps were comparable. The sorption of PHMB@silica on pulp in suspension under UHP conditions was ca 17% greater than under atmospheric pressure with almost 70% increase of leachable PHMB.
Assuntos
Antibacterianos/química , Biguanidas/química , Celulose/química , Carboidratos , Escherichia coli , Bactérias Gram-Positivas , PressãoRESUMO
High-pressure laminates (HPLs) are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB) was incorporated for the first time into melamine-formaldehyde resin (MF) matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms), whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms). The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.
RESUMO
Hyperbaric storage at room temperature (without temperature control) of raw bovine meat was studied and compared to refrigeration. Samples were first stored for 12h at 50, 100 and 150MPa, and in a second set of experiments, for a longer period of 10days at 50MPa. For the 12h storage, refrigeration and 50MPa had a similar microbial growth inhibition effect and, at 100 and 150MPa an additional microbial inactivation effect was found. For the longer experiment (10days at 50MPa) results pointed for a shelf-life increase of raw beef compared to samples stored under refrigeration. For both tests (12h and 10days) samples preserved under pressure showed no detrimental effect on physicochemical parameters comparatively to the initial and refrigerated samples. These results indicate that hyperbaric storage at room temperature not only allows high energy savings, but additionally has potential to extend the shelf-life of a perishable food product compared to refrigeration.
Assuntos
Conservação de Alimentos , Armazenamento de Alimentos/métodos , Carne Vermelha/microbiologia , Refrigeração , Animais , Carga Bacteriana , Bovinos , Fenômenos Químicos , Contagem de Colônia Microbiana , Cor , Enterobacteriaceae/isolamento & purificação , Ácidos Graxos/análise , Estudos de Viabilidade , Contaminação de Alimentos , Microbiologia de Alimentos , Embalagem de Alimentos , Concentração de Íons de Hidrogênio , Temperatura , Leveduras/isolamento & purificaçãoRESUMO
Accurate heart beat detection in signals acquired from intensive care unit (ICU) patients is necessary for establishing both normality and detecting abnormal events. Detection is normally performed by analysing the electrocardiogram (ECG) signal, and alarms are triggered when parameters derived from this signal exceed preset or variable thresholds. However, due to noisy and missing data, these alarms are frequently deemed to be false positives, and therefore ignored by clinical staff. The fusion of features derived from other signals, such as the arterial blood pressure (ABP) or the photoplethysmogram (PPG), has the potential to reduce such false alarms. In order to leverage the highly correlated temporal nature of the physiological signals, a hidden semi-Markov model (HSMM) approach, which uses the intra- and inter-beat depolarization interval, was designed to detect heart beats in such data. Features based on the wavelet transform, signal gradient and signal quality indices were extracted from the ECG and ABP waveforms for use in the HSMM framework. The presented method achieved an overall score of 89.13% on the hidden/test data set provided by the Physionet/Computing in Cardiology Challenge 2014: Robust Detection of Heart Beats in Multimodal Data.
Assuntos
Técnicas de Diagnóstico Cardiovascular , Frequência Cardíaca , Coração/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Bases de Dados Factuais , Reações Falso-Positivas , Humanos , Cadeias de Markov , Sensibilidade e Especificidade , Análise de OndaletasRESUMO
Hyperbaric storage (HS), storage under pressure at 25°C and 30°C, of a ready-to-eat (RTE) soup was studied and compared with refrigeration. Soup was stored at different time (4 and 8 h), temperature (4°C, 25°C, and 30°C), and pressure (0.1, 100, and 150 MPa) conditions, to compare microbial loads and physicochemical parameters. HS resulted in similar (microbial growth inhibition) to better (microbial inactivation) results compared to refrigeration, leading to equal and lower microbial loads, respectively, at the end of storage. Lower/higher pressure (100 vs. 150 MPa) and shorter/longer storage times (4 vs. 8 h) resulted in more pronounced microbial growth inhibition/microbial inactivation. Aerobic mesophiles showed less susceptibility to HS, compared to Enterobacteriaceae and yeast and molds. HS maintained generally the physicochemical parameters at values similar to refrigeration. Thus, HS with no need for temperature control throughout storage and so basically energetically costless, is a potential alternative to refrigeration.
RESUMO
Hyperbaric storage (8h) of melon juice (a highly perishable food) at 25, 30 and 37°C, under pressure at 25-150 MPa was compared with atmospheric pressure storage (0.1 MPa) at the same temperatures and under refrigeration (4°C). Comparatively to the refrigerated condition, hyperbaric storage at 50/75 MPa resulted in similar or lower microbial counts (total aerobic mesophiles, enterobacteriaceae, and yeasts/moulds) while at 100/150 MPa, the counts were lower for all the tested temperatures, indicating in the latter case, in addition to microbial growth inhibition, a microbial inactivation effect. At 25 MPa no microbial inhibition was observed. Physicochemical parameters of all samples stored under pressure (pH, titratable acidity, total soluble solids, browning degree and cloudiness) did not show a clear variation trend with pressure, being the results globally similar to refrigeration storage. These results show the potential of hyperbaric storage, at and above room temperature and with potential energy savings, comparatively to refrigeration.