Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Opt Express ; 13(6): 3259-3274, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781957

RESUMO

Measuring cortisol levels as a stress biomarker is essential in many medical conditions associated with a high risk of metabolic syndromes such as anxiety and cardiovascular diseases, among others. One technology that has a growing interest in recent years is fiber optic biosensors that enable ultrasensitive cortisol detection. Such interest is allied with progress being achieved in basic interrogation, accuracy improvements, and novel applications. The development of improved cortisol monitoring, with a simplified manufacturing process, high reproducibility, and low cost, are challenges that these sensing mechanisms still face, and for which solutions are still needed. In this paper, a comprehensive characterization of a D-shaped fiber optic immunosensor for cortisol detection based on surface plasmon resonance (SPR) enabled by gold coating is reported. Specifically, the sensor instrumentation and fabrication processes are discussed in detail, and a simulation with its complete mathematical formalism is also presented. Moreover, experimental cortisol detection tests were performed for a detection range of 0.01 to 100 ng/mL, attaining a logarithmic sensitivity of 0.65 ± 0.02 nm/log(ng/mL) with a limit of detection (LOD) of 1.46 ng/mL. Additionally, an investigation of signal processing is also discussed, with the main issues addressed in order to highlight the best way to extract the sensing information from the spectra measured with a D-shaped sensor.

2.
Nanomaterials (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443722

RESUMO

Carbon-based electrodes have demonstrated great promise as electrochemical transducers in the development of biosensors. More recently, laser-induced graphene (LIG), a graphene derivative, appears as a great candidate due to its superior electron transfer characteristics, high surface area and simplicity in its synthesis. The continuous interest in the development of cost-effective, more stable and reliable biosensors for glucose detection make them the most studied and explored within the academic and industry community. In this work, the electrochemistry of glucose oxidase (GOx) adsorbed on LIG electrodes is studied in detail. In addition to the well-known electroactivity of free flavin adenine dinucleotide (FAD), the cofactor of GOx, at the expected half-wave potential of -0.490 V vs. Ag/AgCl (1 M KCl), a new well-defined redox pair at 0.155 V is observed and shown to be related to LIG/GOx interaction. A systematic study was undertaken in order to understand the origin of this activity, including scan rate and pH dependence, along with glucose detection tests. Two protons and two electrons are involved in this reaction, which is shown to be sensitive to the concentration of glucose, restraining its origin to the electron transfer from FAD in the active site of GOx to the electrode via direct or mediated by quinone derivatives acting as mediators.

3.
Biosensors (Basel) ; 11(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34562895

RESUMO

The evolution of optical fiber technology has revolutionized a variety of fields, from optical transmission to environmental monitoring and biomedicine, given their unique properties and versatility. For biosensing purposes, the light guided in the fiber core is exposed to the surrounding media where the analytes of interest are detected by different techniques, according to the optical fiber configuration and biofunctionalization strategy employed. These configurations differ in manufacturing complexity, cost and overall performance. The biofunctionalization strategies can be carried out directly on bare fibers or on coated fibers. The former relies on interactions between the evanescent wave (EW) of the fiber and the analyte of interest, whereas the latter can comprise plasmonic methods such as surface plasmon resonance (SPR) and localized SPR (LSPR), both originating from the interaction between light and metal surface electrons. This review presents the basics of optical fiber immunosensors for a broad audience as well as the more recent research trends on the topic. Several optical fiber configurations used for biosensing applications are highlighted, namely uncladded, U-shape, D-shape, tapered, end-face reflected, fiber gratings and special optical fibers, alongside practical application examples. Furthermore, EW, SPR, LSPR and biofunctionalization strategies, as well as the most recent advances and applications of immunosensors, are also covered. Finally, the main challenges and an outlook over the future direction of the field is presented.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Fibras Ópticas , Metais , Ressonância de Plasmônio de Superfície
4.
ACS Appl Mater Interfaces ; 11(8): 8470-8482, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30694644

RESUMO

Hybrid diamond-graphite nanoplatelet (DGNP) thin films are produced and applied to label-free impedimetric biosensors for the first time, using avidin detection as a proof of concept. The DGNPs are synthesized by microwave plasma chemical vapor deposition through H2/CH4/N2 gas mixtures in a reproducible and rapid single-step process. The material building unit consists of an inner two-dimensional-like nanodiamond with preferential vertical alignment covered by and covalently bound to nanocrystalline graphite grains, exhibiting {111}diamond||{0002}graphite epitaxy. The DGNP films' morphostructural aspects are of interest for electrochemical transduction, in general, and for Faradaic impedimetric biosensors, in particular, combining enhanced surface area for biorecognition element loading and facile Faradaic charge transfer. Charge transfer rate constants in phosphate buffer saline/[Fe(CN)6]4- solution are shown to increase up to 5.6 × 10-3 cm s-1 upon N2 addition to DGNP synthesis. For the impedimetric detection of avidin, biotin molecules are covalently bound as avidin specific recognition elements on (3-aminopropyl)triethoxysilane-functionalized DGNP surfaces. Avidin quantification is attained within the 10-1000 µg mL-1 range following a logarithmic dependency. The limits of detection and of quantitation are 1.3 and 6.4 µg mL-1 (19 and 93 nM), respectively, and 2.3 and 13.8 µg mL-1 (33 and 200 nM) when considering the nonspecific response of the sensors.


Assuntos
Avidina/análise , Técnicas Biossensoriais/métodos , Diamante/química , Grafite/química , Nanoestruturas/química , Técnicas Eletroquímicas , Ferricianetos/química , Gases/química , Limite de Detecção , Propilaminas/química , Silanos/química
5.
Nanoscale Adv ; 1(8): 3252-3268, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133624

RESUMO

A scalable laser scribing approach to produce zinc oxide (ZnO) decorated laser-induced graphene (LIG) in a unique laser-processing step was developed by irradiating a polyimide sheet covered with a Zn/ZnO precursor with a CO2 laser (10.6 µm) under ambient conditions. The laser scribing parameters revealed a strong impact on the surface morphology of the formed LIG, on ZnO microparticles' formation and distribution, as well as on the physical properties of the fashioned composites. The ZnO microparticles were seen to be randomly distributed along the LIG surface, with the amount and dimensions depending on the used laser processing conditions. Besides the synthesis conditions, the use of different precursors also resulted in distinct ZnO growth's yields and morphologies. Raman spectroscopy revealed the existence of both wurtzite-ZnO and sp2 carbon in the majority of the produced samples. Broad emission bands in the visible range and the typical ZnO near band edge (NBE) emission were detected by photoluminescence studies. The spectral shape of the luminescence signal was seen to be extremely sensitive to the employed processing parameters and precursors, highlighting their influence on the composites' optical defect distribution. The sample produced from the ZnO-based precursor evidenced the highest luminescence signal, with a dominant NBE recombination. Electrochemical measurements pointed to the existence of charge transfer processes between LIG and the ZnO particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA