RESUMO
Within and among populations, alkaloid defenses of the strawberry poison frog (Oophaga pumilio) vary spatially, temporally, and with life history stage. Natural variation in defense has been implicated as a critical factor in determining the level of protection afforded against predators and pathogens. Oophaga pumilio tadpoles sequester alkaloids from nutritive eggs and are, thus, entirely dependent on their mothers for their defense. However, it remains unclear how tadpole alkaloid composition relates to that of its mother and how variation in maternally provisioned defenses might result in varying levels of protection against predators. Here, we demonstrate that natural variation in the alkaloid composition of a mother frog is reflected as variation in her tadpole's alkaloid composition. Tadpoles, like mother frogs, varied in their alkaloid composition but always contained the identical alkaloids found in their mother. Alkaloid quantity in tadpoles was highly correlated with alkaloid quantity in their mothers. Additionally, alkaloid quantity was the best predictor of tadpole palatability, wherein tadpoles with higher alkaloid quantities were less palatable. Mother frogs with greater quantities of alkaloids are, thus, providing better protection for their offspring by provisioning chemical defenses during one of the most vulnerable periods of life.
Assuntos
Alcaloides , Venenos , Animais , Feminino , Humanos , Anuros , Larva , MãesRESUMO
Many chemically-defended/aposematic species rely on diet for sequestering the toxins with which they defend themselves. This dietary acquisition can lead to variable chemical defenses across space, as the community composition of chemical sources is likely to vary across the range of (an aposematic) species. We characterized the alkaloid content of two populations of the Dyeing Poison Frog (Dendrobates tinctorius) in northeastern French Guiana. Additionally, we conducted unpalatability experiments with naive predators, Blue Tits (Cyanistes caeruleus), using whole-skin secretion cocktails to assess how a model predator would respond to the defense of individuals from each population. While there was some overlap between the two D. tinctorius populations in terms of alkaloid content, our analysis revealed that these two populations are markedly distinct in terms of overall alkaloid profiles. Predator responses to skin secretions differed between the populations. We identified 15 candidate alkaloids (including three previously undescribed) in seven classes that are correlated with predator response in one frog population. We describe alkaloid profile differences between populations for D. tinctorius and provide a novel method for assessing unpalatability of skin secretions and identifying which toxins may contribute to the predator response. In one population, our results suggest 15 alkaloids that are implicated in predator aversive response. This method is the first step in identifying the causal link between alkaloids and behavioral responses of predators, and thus makes sense of how varying alkaloid combinations are capable of eliciting consistent behavioral responses, and eventually driving evolutionary change in aposematic characters (or characteristics).
Assuntos
Alcaloides , Venenos , Aves Canoras , Toxinas Biológicas , Humanos , Animais , Venenos/toxicidade , Anuros/fisiologia , Comportamento Predatório/fisiologiaRESUMO
Poison frogs sequester alkaloid defenses from a diet of largely mites and ants. As a result, frogs are defended against certain predators and microbial infections. Frogs in the genus Oophaga exhibit complex maternal care, wherein mothers transport recently hatched tadpoles to nursery pools and return regularly to supply developing tadpoles with unfertilized (nutritive) eggs. Developing tadpoles are obligate egg feeders. Further, female O. pumilio and O. sylvatica maternally provision their nutritive eggs with alkaloid defenses, providing protection to their developing tadpoles at a vulnerable life-stage. In another genus of poison frog, Ranitomeya, tadpoles only receive and consume eggs facultatively, and it is currently unknown if mothers also provision these eggs (and thus their tadpoles) with alkaloid defenses. Here, we provide evidence that mother frogs of another species in the genus Oophaga (Oophaga granulifera) also provision alkaloid defenses to their tadpoles. We also provide evidence that Ranitomeya imitator and R. variabilis eggs and tadpoles do not contain alkaloids, suggesting that mother frogs in this genus do not provision alkaloid defenses to their offspring. Our findings suggest that among dendrobatid poison frogs, maternal provisioning of alkaloids may be restricted to the obligate egg-feeding members of Oophaga.
Assuntos
Alcaloides , Formigas , Venenos , Animais , Feminino , Anuros , LarvaRESUMO
Millipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. Here, we describe (6aR,10aS,10bR)-8,8-dimethyldodecahydropyrrolo[2,1-a]isoquinoline [trans-anti-trans-deoxybuzonamine (1a)] and (rel-6aR,10aR,10bR)-8,8-dimethyldodecahydropyrrolo[2,1-a]isoquinoline [trans-syn-cis-deoxybuzonamine (1b)], two isomers of deoxybuzonamine found in the chemical defense secretions of the millipede Brachycybe lecontii Wood (Colobognatha, Platydesmida, Andrognathidae). The carbon-nitrogen skeleton of these compounds was determined from their MS and GC-FTIR spectra obtained from the MeOH extract of whole millipedes, along with a subsequent selective synthesis. Their structures were established from their 1D (1H, 13C) and 2D NMR (COSY, NOESY, multiplicity-edited HSQC, HSQC-TOCSY, HMBC) spectra. Additionally, computational chemistry (DFT and DP4) was used to identify the relative configurations of 1a and 1b by comparing predicted 13C data to their experimental values, and the absolute configuration of 1a was determined by comparing its experimental specific rotation with that of the computationally calculated value. This is the first report of dodecahydropyrrolo[2,1-a]isoquinoline alkaloids from a platydesmidan millipede.
Assuntos
Artrópodes , Animais , Artrópodes/química , Isomerismo , Espectroscopia de Ressonância Magnética , Estrutura MolecularRESUMO
Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.
Assuntos
Comunicação Animal , Anuros/fisiologia , Aprendizagem da Esquiva , Comportamento Animal , Galinhas/fisiologia , Fluxo Gênico , Comportamento Predatório/fisiologia , Animais , Animais Peçonhentos/genética , Animais Peçonhentos/fisiologia , Anuros/genética , Evolução Biológica , Variação Genética , Genética Populacional , Modelos Biológicos , FenótipoRESUMO
The total synthesis of two decahydroquinoline poison frog alkaloids ent-cis-195A and cis-211A were achieved in 16 steps (38% overall yield) and 19 steps (31% overall yield), respectively, starting from known compound 1. Both alkaloids were synthesized from the common key intermediate 11 in a divergent fashion, and the absolute stereochemistry of natural cis-211A was determined to be 2R, 4aR, 5R, 6S, and 8aS. Interestingly, the absolute configuration of the parent decahydroquinoline nuclei of cis-211A was the mirror image of that of cis-195A, although both alkaloids were isolated from the same poison frog species, Oophaga (Dendrobates) pumilio, from Panama.
Assuntos
Alcaloides/síntese química , Quinolinas/síntese química , Alcaloides/química , Animais , Anuros , Estrutura Molecular , Panamá , Quinolinas/química , EstereoisomerismoRESUMO
Millipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. Here we describe gosodesmine (1), 7-(4-methylpent-3-en-1-yl)-1,2,3,5,8,8a-hexahydroindolizine, a unique alkaloid with some terpene character found in the chemical defense secretions of the millipede Gosodesmus claremontus Chamberlin (Colobognatha, Platydesmida, Andrognathidae). The structure of 1 was suggested by its mass spectra and GC-FTIR spectra and established from its 1H, 13C, and 2D NMR spectra and 1D NOE studies. The 7-substituted indolizidine carbon skeleton of 1 was confirmed by unambiguous synthesis. This is the first report of an alkaloid from a platydesmid millipede and the first report of a 7-substituted indolizidine from an arthropod.
Assuntos
Artrópodes/química , Animais , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Most amphibians produce their own defensive chemicals; however, poison frogs sequester their alkaloid-based defenses from dietary arthropods. Alkaloids function as a defense against predators, and certain types appear to inhibit microbial growth. Alkaloid defenses vary considerably among populations of poison frogs, reflecting geographic differences in availability of dietary arthropods. Consequently, environmentally driven differences in frog defenses may have significant implications regarding their protection against pathogens. While natural alkaloid mixtures in dendrobatid poison frogs have recently been shown to inhibit growth of non-pathogenic microbes, no studies have examined the effectiveness of alkaloids against microbes that infect these frogs. Herein, we examined how alkaloid defenses in the dendrobatid poison frog, Oophaga pumilio, affect growth of the known anuran pathogens Aeromonas hydrophila and Klebsiella pneumoniae. Frogs were collected from five locations throughout Costa Rica that are known to vary in their alkaloid profiles. Alkaloids were isolated from individual skins, and extracts were assayed against both pathogens. Microbe subcultures were inoculated with extracted alkaloids to create dose-response curves. Subsequent spectrophotometry and cell counting assays were used to assess growth inhibition. GC-MS was used to characterize and quantify alkaloids in frog extracts, and our results suggest that variation in alkaloid defenses lead to differences in inhibition of these pathogens. The present study provides the first evidence that alkaloid variation in a dendrobatid poison frog is associated with differences in inhibition of anuran pathogens, and offers further support that alkaloid defenses in poison frogs confer protection against both pathogens and predators.
Assuntos
Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/fisiologia , Alcaloides/metabolismo , Anuros/metabolismo , Anuros/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Aeromonas hydrophila/crescimento & desenvolvimento , Alcaloides/farmacologia , Animais , Relação Dose-Resposta a Droga , Klebsiella pneumoniae/crescimento & desenvolvimentoRESUMO
Millipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. As part of a larger investigation, we describe the chemical constituents of 14 species of Tasmanian millipedes in seven genera. Six species in the genus Gasterogramma were found to produce acyclic ketones, including the pungent unsaturated ketones 1, 2, and 6, and the novel (rel-3R,5S,7S)-3,5,7-trimethyl-2,8-decanedione (7b), for which the stereoconfiguration was established by stereoselective syntheses of pairs of isomers. These compounds have not been detected before in millipede defensive secretions. This report is the first on species of the suborder Dalodesmidea (Polydesmida), a dominant component of the soil and litter fauna of the temperate regions of the Southern Hemisphere.
Assuntos
Artrópodes/química , Animais , Cetonas/química , Estereoisomerismo , TasmâniaRESUMO
Conspicuously colored dendrobatid frogs sequester alkaloid defenses from dietary arthropods, resulting in considerable alkaloid variation among populations; however, little is known about how variation is perceived as a defense against predators. Previous studies have found variable alkaloids in the dendrobatid Oophaga pumilio to be associated with differences in toxicity to laboratory mice, suggesting variable defenses are important. Arthropods are natural predators that use chemoreception to detect prey, including frogs, and may therefore perceive variation in alkaloid profiles as differences in palatability. The goal of the present study is to determine how arthropods respond to variable alkaloid defenses in O. pumilio. Frog alkaloids were sampled from individual O. pumilio from ten geographic locations throughout the Bocas del Toro region of Panama and the Caribbean coast of Costa Rica. Alkaloid extracts were used in feeding bioassays with the vinegar fly Drosophila melanogaster and the ant Ectatomma ruidum. Both species of arthropods fed significantly less on frog alkaloid extracts when compared to controls, and differences in alkaloid palatability were observed among frog populations, as well as between sexes and life stages within a population. Differences in alkaloid quantity, richness, and type were the main predictors of arthropod palatability. Our findings also represent the first direct evidence of a palatability spectrum in a vertebrate that sequesters chemical defenses from dietary sources. Further, the presence of a palatability spectrum suggests that variable alkaloid defenses in O. pumilio are ecologically relevant and play an important role in natural predator-prey interactions, particularly with respect to arthropod predators.
Assuntos
Alcaloides/metabolismo , Anuros/fisiologia , Artrópodes/metabolismo , Percepção , Animais , Anuros/metabolismo , Comportamento Alimentar , Feminino , Masculino , Comportamento PredatórioRESUMO
INTRODUCTION: Amphibians secrete a wide diversity of chemicals from skin glands as defense against predators, parasites, and pathogens. Most defensive chemicals are produced endogenously through biosynthesis, but poison frogs sequester lipophilic alkaloids from dietary arthropods. Alkaloid composition varies greatly, even among conspecific individuals collected at the same time and place, with some individuals having only a few micrograms of one or a few alkaloids and others possessing >1 mg of >30 alkaloids. The paucity of alkaloids in juveniles and their abundance in adults suggests that alkaloids accumulate over time; however, alkaloid diversity is highly variable among adult poison frogs and has never been studied in relation to individual age. Using skeletochronology to infer individual ages and gas chromatography-mass spectrometry and vapor phase Fourier-transform infrared spectral analysis to identify the defensive chemicals of 63 individuals, we tested the relationship between defensive chemicals and age, size, and sex in the Brazilian red-belly toad, Melanophryniscus moreirae, a poison frog that possesses both sequestered alkaloids and the biosynthesized indolealkylamine bufotenine. RESULTS: Adult females were, on average, older and larger than adult males. Juveniles were smaller but not necessarily younger than adults and possessed bufotenine and 18 of the 37 alkaloids found in adults. Alkaloid richness was positively related to age, but not size, whereas the quantities of sequestered alkaloids and bufotenine were positively related to size, but not age. Defensive chemicals were unrelated to sex, independent of size. CONCLUSIONS: The relationship between alkaloid richness and age appears to result from the gradual accumulation of alkaloids over a frog's lifetime, whereas the relationship between the quantity of defensive chemicals and size appears to be due to the greater storage capacity of larger individuals. The decoupling of age and size effects increases the amount of individual variation that can occur within a population, thereby possibly enhancing anti-predator efficacy. Further, given that both richness and quantity contribute to the overall chemical defense of individual frogs, our results suggest that older, larger individuals are better defended than younger, smaller ones. These considerations underscore the importance of including age in studies of the causes and consequences of variation in poison frog chemical defenses.
RESUMO
Bufonid poison frogs of the genus Melanophryniscus contain alkaloid-based chemical defenses that are derived from a diet of alkaloid-containing arthropods. In addition to dietary alkaloids, bufadienolide-like compounds and indolealkylamines have been identified in certain species of Melanophryniscus. Our study reports, for the first time, the co-occurrence of large quantities of both alkaloids sequestered from the diet and an endogenously biosynthesized indolalkylamine in skin secretions from individual specimens of Melanophryniscus moreirae from Brazil. GC/MS analysis of 55 individuals of M. moreirae revealed 37 dietary alkaloids and the biosynthesized indolealkylamine bufotenine. On average, pumiliotoxin 267C, bufotenine, and allopumilitoxin 323B collectively represent ca. 90 % of the defensive chemicals present in an individual. The quantity of defensive chemicals differed between sexes, with males possessing significantly less dietary alkaloid and bufotenine than females. Most of the dietary alkaloids have structures with branched-chains, indicating they are likely derived from oribatid mites. The ratio of bufotenine:alkaloid quantity decreased with increasing quantities of dietary alkaloids, suggesting that M. moreirae might regulate bufotenine synthesis in relation to sequestration of dietary alkaloids.
Assuntos
Alcaloides/metabolismo , Bufonidae/fisiologia , Bufotenina/metabolismo , Pele/metabolismo , Animais , Bufotenina/biossíntese , Feminino , MasculinoRESUMO
Seventy skins of three mantellid frog species from Madagascan swamp-forest habitats, Mantella aurantiaca, M. crocea, and M. milotympanum, were individually examined for skin alkaloids using GC/MS. These poison frogs were found to differ significantly in their alkaloid composition from species of Mantella originating from non-flooded rainforest in eastern Madagascar, which were examined in earlier work. Only 16 of the previously detected 106 alkaloids were represented among the 60 alkaloids from the swamp-forest frogs of the present study. We hypothesize this difference is related mainly to habitat but cannot exclude a phylogenetic component as the three swamp-forest species are a closely related monophyletic group. The paucity of alkaloids with unbranched-carbon skeletons (ant-derived) and the commonness of alkaloids with branched-carbon skeletons (mite-derived) indicate that oribatid mites are a major source of alkaloids in these species of mantellids. Furthermore, most of the alkaloids have an oxygen atom in their formulae. Differences in alkaloids were observed among species, populations of the same species, and habitats. In M. aurantiaca, small geographic distances among populations were associated with differences in alkaloid profiles, with a remote third site illustrating even greater differences. The present study and an earlier study of three other mantellid species suggest that oribatid mites, and not ants, are the major source of alkaloids in the species of mantellids examined thus far.
Assuntos
Alcaloides/análise , Anuros/metabolismo , Pele/metabolismo , Alcaloides/metabolismo , Animais , Florestas , Cromatografia Gasosa-Espectrometria de Massas , Madagáscar , Pele/química , Áreas AlagadasRESUMO
The opisthonotal (oil) glands of oribatid mites are the source of a wide diversity of taxon-specific defensive chemicals, and are likely the location for the more than 90 alkaloids recently identified in oribatids. Although originally recognized in temperate oribatid species, alkaloids have also been detected in related lineages of tropical oribatids. Many of these alkaloids are also present in a worldwide radiation of poison frogs, which are known to sequester these defensive chemicals from dietary arthropods, including oribatid mites. To date, most alkaloid records involve members of the superfamily Oripodoidea (Brachypylina), although few species have been examined and sampling of other taxonomic groups has been highly limited. Herein, we examined adults of more than 60 species of Nearctic oribatid mites, representing 46 genera and 33 families, for the presence of alkaloids. GC-MS analyses of whole body extracts led to the detection of 15 alkaloids, but collectively they occur only in members of the genera Scheloribates (Scheloribatidae) and Protokalumma (Parakalummidae). Most of these alkaloids have also been detected previously in the skin of poison frogs. All examined members of the oripodoid families Haplozetidae and Oribatulidae were alkaloid-free, and no mites outside the Oripodoidea contained alkaloids. Including previous studies, all sampled species of the cosmopolitan oripodoid families Scheloribatidae and Parakalummidae, and the related, mostly tropical families Mochlozetidae and Drymobatidae contain alkaloids. Our findings are consistent with a generalization that alkaloid presence is widespread, but not universal in Oripodoidea. Alkaloid presence in tropical, but not temperate members of some non-oripodoid taxa (in particular Galumnidae) deserves further study.
Assuntos
Alcaloides/análise , Alcaloides/metabolismo , Ácaros/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas , Ácaros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estados UnidosRESUMO
BACKGROUND: Polytypism in aposematic species is unlikely according to theory, but commonly seen in nature. Ranitomeya imitator is a poison frog species exhibiting polytypic mimicry of three congeneric model species (R. fantastica, R. summersi, and two morphs of R. variabilis) across four allopatric populations (a "mimetic radiation"). In order to investigate chemical defenses in this system, a key prediction of Müllerian mimicry, we analyzed the alkaloids of both models and mimics from four allopatric populations. RESULTS: In this study we demonstrate distinct differences in alkaloid profiles between co-mimetic species within allopatric populations. We further demonstrate that R. imitator has a greater number of distinct alkaloid types than the model species and more total alkaloids in all but one population. CONCLUSIONS: Given that R. imitator is the more abundant species in these populations, R. imitator is likely driving the majority of predator-learned avoidance in these complexes. The success of Ranitomeya imitator as a putative advergent mimic may be a direct result of differences in alkaloid sequestration. Furthermore, we propose that automimicry within co-mimetic species is an important avenue of research.
Assuntos
Alcaloides/análise , Anuros/fisiologia , Evolução Biológica , Animais , Anuros/genética , Cadeia AlimentarRESUMO
Many organisms use chemical defenses to reduce predation risk. Aposematic dendrobatid frogs sequester alkaloid-based chemical defenses from a diet of arthropods, but research on these defenses has been limited to adults. Herein, we investigate chemical defense across development in a dendrobatid frog, Oophaga pumilio. This species displays complex parental care: at hatching, mothers transport tadpoles to phytotelmata, and then return to supply them with an obligate diet of nutritive eggs for about six weeks. We collected eggs, tadpoles, juveniles, and adults of O. pumilio, and detected alkaloids in all life stages. The quantity and number of alkaloids increased with frog and tadpole size. We did not detect alkaloids in the earliest stage of tadpoles, but alkaloids were detected as trace quantities in nutritive eggs and as small quantities in ovarian eggs. Tadpoles hand-reared with eggs of an alkaloid-free heterospecific frog did not contain alkaloids. Alkaloids that are sequestered from terrestrial arthropods were detected in both adults and phytotelm-dwelling tadpoles that feed solely on nutritive eggs, suggesting that this frog may be the first animal known to actively provision post-hatch offspring with chemical defenses. Finally, we provide experimental evidence that maternally derived alkaloids deter predation of tadpoles by a predatory arthropod.
Assuntos
Alcaloides/metabolismo , Ranidae/metabolismo , Alcaloides/análise , Venenos de Anfíbios/análise , Venenos de Anfíbios/metabolismo , Animais , Feminino , Larva/metabolismo , ÓvuloRESUMO
Several lineages of brightly colored anurans independently evolved the ability to secrete alkaloid-containing defensive chemicals from granular glands in the skin. These species, collectively referred to as 'poison frogs,' form a polyphyletic assemblage that includes some species of Dendrobatidae, Mantellidae, Myobatrachidae, Bufonidae, and Eleutherodactylidae. The ability to sequester alkaloids from dietary arthropods has been demonstrated experimentally in most poison frog lineages but not in bufonid or eleutherodactylid poison frogs. As with other poison frogs, species of the genus Melanophryniscus (Bufonidae) consume large numbers of mites and ants, suggesting they might also sequester defensive alkaloids from dietary sources. To test this hypothesis, fruit flies dusted with alkaloid/nutritional supplement powder were fed to individual Melanophryniscus stelzneri in two experiments. In the first experiment, the alkaloids 5,8-disubstituted indolizidine 235B' and decahydroquinoline were administered to three individuals for 104 days. In the second experiment, the alkaloids 3,5-disubstituted indolizidine 239Q and decahydroquinoline were given to three frogs for 153 days. Control frogs were fed fruit flies dusted only with nutritional supplement. Gas chromatography/mass spectrometry analyses revealed that skin secretions of all experimental frogs contained alkaloids, whereas those of all control frogs lacked alkaloids. Uptake of decahydroquinoline was greater than uptake of 5,8-disubstituted indolizidine, and uptake of 3,5-disubstituted indolizidine was greater than uptake of decahydroquinoline, suggesting greater uptake efficiency of certain alkaloids. Frogs in the second experiment accumulated a greater amount of alkaloid, which corresponds to the longer duration and greater number of alkaloid-dusted fruit flies that were consumed. These findings provide the first experimental evidence that bufonid poison frogs sequester alkaloid-based defenses from dietary sources.
Assuntos
Alcaloides/metabolismo , Bufonidae/metabolismo , Pele/metabolismo , Animais , Dieta , DrosophilaRESUMO
Sequestration of chemical defenses from dietary sources is dependent on the availability of compounds in the environment and the mechanism of sequestration. Previous experiments have shown that sequestration efficiency varies among alkaloids in poison frogs, but little is known about the underlying mechanism. The aim of this study was to quantify the extent to which alkaloid sequestration and modification are dependent on alkaloid availability and/or sequestration mechanism. To do this, we administered different doses of histrionicotoxin (HTX) 235A and decahydroquinoline (DHQ) to captive-bred Adelphobates galactonotus and measured alkaloid quantity in muscle, kidney, liver, and feces. HTX 235A and DHQ were detected in all organs, whereas only DHQ was present in trace amounts in feces. For both liver and skin, the quantity of alkaloid accumulated increased at higher doses for both alkaloids. Accumulation efficiency in the skin increased at higher doses for HTX 235A but remained constant for DHQ. In contrast, the efficiency of HTX 235A accumulation in the liver was inversely related to dose and a similar, albeit statistically nonsignificant, pattern was observed for DHQ. We identified and quantified the N-methylation of DHQ in A. galactonotus, which represents a previously unknown example of alkaloid modification in poison frogs. Our study suggests that variation in alkaloid composition among individuals and species can result from differences in sequestration efficiency related to the type and amount of alkaloids available in the environment.
Assuntos
Alcaloides , Venenos , Alcaloides/química , Animais , Anuros/fisiologia , Metilação , QuinolinasRESUMO
Poison frogs are chemically defended from predators by diverse alkaloids, almost all of which are sequestered unchanged from alkaloid-containing arthropods in the frog diet. Oribatid mites recently have been proposed as a major dietary source of poison frog alkaloids. Here, we report on alkaloids common to an oribatid mite and poison frogs. Gas chromatographic-mass spectrometric analysis of methanol extracts of adult Scheloribates laevigatus (Oribatida: Scheloribatidae) revealed nine alkaloids. Five of these have been detected previously in the skin glands of poison frogs: two isomers of the pumiliotoxin 291G, two isomers of the 5,6,8-trisubstituted indolizidine 209C, and the 5,6,8-trisubstituted indolizidine 195G. The other four alkaloids, a pumiliotoxin, a tricyclic (coccinelline-like), and two isomers of an izidine, were not previously known, but are similar in structure to alkaloids found in poison frogs. Alkaloids were not detected in immature S. laevigatus, suggesting that they are adult-specific and possibly the result of mite biosynthesis. Although most of the alkaloids detected in S. laevigatus are common to poison frogs, the geographic distributions of these organisms are not sympatric. The findings of this study indicate that oribatid mites, and in particular, members of the genus Scheloribates, represent a relatively unexplored arthropod repository for alkaloids and a significant dietary source of alkaloids in poison frogs.
Assuntos
Alcaloides/metabolismo , Anuros/metabolismo , Ácaros/metabolismo , Alcaloides/análise , Alcaloides/química , Ração Animal/análise , Animais , Anuros/fisiologia , Óxidos N-Cíclicos/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos Heterocíclicos com 3 Anéis/química , Indolizidinas/metabolismo , Ácaros/química , Especificidade da EspécieRESUMO
Four five-skin alkaloid extracts of the Madagascan poison frog Mantella baroni from three disturbed collection sites were compared with four five-skin extracts from three undisturbed sites. The number of alkaloids (diversity) was significantly different in M. baroni between undisturbed and disturbed collection sites, with more alkaloids generally being found in frogs from disturbed sites. Two undisturbed sites did not differ from two disturbed sites, but the third disturbed site (coded 6) had more than twice the alkaloid diversity found in frogs from the third undisturbed site (coded 5a/5b). There was no difference in the quantity of alkaloids in M. baroni between undisturbed and disturbed collection sites. The hypothesis that an undisturbed habitat confers a benefit to poison frogs dwelling therein, in allowing for the sequestration of greater alkaloid diversity and amounts, is challenged by our results. In the course of our study, we found that collections of frogs separated by an interval of three months at an undisturbed site differed by only 4% in alkaloid composition over this period, whereas frogs collected at a disturbed site and collected approximately three months later already had a 26% difference in alkaloid composition between the two collections. This constancy of skin alkaloid composition likely reflects a constancy of dietary prey items consumed by frogs at undisturbed sites.