Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mar Policy ; 148: 105395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36404801

RESUMO

An overview of the negative effects of the COVID-19 pandemic on the mariculture industry of the republic of Croatia is provided. An initial online survey was circulated early after the onset of the pandemic and a follow-up field survey was performed a year into the pandemic. The surveyed companies varied in size (micro to medium enterprises), location (north, central and southern coast) and cultured organism (European flat oyster, Mediterranean mussel, European sea bass, Gilthead sea bream and/or Bluefin tuna) and were asked questions on the subject of economic and job losses, aquaculture supply chain processes and implemented or proposed measures for mitigation of negative effects. Results from the online survey showed higher economic loss than job loss, but companies reported increased job loss in the period leading to the field survey. Most companies reported reductions in sales and avenues of procurement, which, in addition to direct stressors, indirectly affected business processes. Micro enterprises fared well due to their part-time nature, low capital investments and running costs, while small to medium enterprises were under the most pressure. Large enterprises were barely affected as they had secure local and/or international distribution chains and dominated the market. Producers most affected were those that relied on the HoReCa market for product placement and/or had difficulty coping with existing stressors. Bivalve producers generally experienced a higher drop in sales than finfish farms and companies with specialized production were not able to adapt to market changes to the degree that more versatile businesses seemed capable of.

2.
Glob Chang Biol ; 27(12): 2645-2655, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33638211

RESUMO

Over the years, concern about the effects of microplastics has grown. Here, we answered the main question "What are the impacts of microplastics on the functional traits of fish species?" through a meta-analysis. The general impact of microplastic exposure on the functional traits of fishes and specifically on eight variables, namely, behaviour, development, fecundity, feeding, growth, health, hatching and survival was explored. Subgroup analyses were performed to detect correlations between the impact of microplastics and the following factors: species, life stage, habitat, water column habitat, day of exposure to microplastics and microplastic size, type and shape. A meta-regression analysis allowed understanding the correlation between the impact of microplastics and the size of organisms. Generally, microplastics have a negative effect on the functional traits of fishes. Feeding and behaviour, followed by growth showed the greatest impact. Among the subgroup analysis, four of the eight variables considered showed a significant difference between groups: species, life stage, microplastic shape and days of exposure to microplastics. Depending on their life stage, organisms may be more sensitive to microplastic pollution. Changes in growth rates, development of early life stage and behavioural patterns in fishes may have a negative effect on the structure and functions of aquatic ecosystem in the long term and consequently affect the ability of aquatic ecosystems to provide ecosystem services and sustain human communities.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Peixes , Humanos , Plásticos , Poluentes Químicos da Água/análise
3.
Glob Chang Biol ; 27(21): 5514-5531, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486773

RESUMO

Marine spatial planning that addresses ocean climate-driven change ('climate-smart MSP') is a global aspiration to support economic growth, food security and ecosystem sustainability. Ocean climate change ('CC') modelling may become a key decision-support tool for MSP, but traditional modelling analysis and communication challenges prevent their broad uptake. We employed MSP-specific ocean climate modelling analyses to inform a real-life MSP process; addressing how nature conservation and fisheries could be adapted to CC. We found that the currently planned distribution of these activities may become unsustainable during the policy's implementation due to CC, leading to a shortfall in its sustainability and blue growth targets. Significant, climate-driven ecosystem-level shifts in ocean components underpinning designated sites and fishing activity were estimated, reflecting different magnitudes of shifts in benthic versus pelagic, and inshore versus offshore habitats. Supporting adaptation, we then identified: CC refugia (areas where the ecosystem remains within the boundaries of its present state); CC hotspots (where climate drives the ecosystem towards a new state, inconsistent with each sectors' present use distribution); and for the first time, identified bright spots (areas where oceanographic processes drive range expansion opportunities that may support sustainable growth in the medium term). We thus create the means to: identify where sector-relevant ecosystem change is attributable to CC; incorporate resilient delivery of conservation and sustainable ecosystem management aims into MSP; and to harness opportunities for blue growth where they exist. Capturing CC bright spots alongside refugia within protected areas may present important opportunities to meet sustainability targets while helping support the fishing sector in a changing climate. By capitalizing on the natural distribution of climate resilience within ocean ecosystems, such climate-adaptive spatial management strategies could be seen as nature-based solutions to limit the impact of CC on ocean ecosystems and dependent blue economy sectors, paving the way for climate-smart MSP.


Assuntos
Mudança Climática , Ecossistema , Adaptação Fisiológica , Conservação dos Recursos Naturais , Pesqueiros , Oceanografia
4.
Ecology ; 99(5): 1005-1010, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29714829

RESUMO

Ecologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO2 -driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts.


Assuntos
Ecossistema , Kelp , Animais , Dióxido de Carbono , Humanos , Concentração de Íons de Hidrogênio , Água do Mar
5.
Glob Chang Biol ; 24(8): 3654-3665, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29723929

RESUMO

Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 g C m-2  day-1 ) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade-offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions.


Assuntos
Aquicultura , Mudança Climática , Conservação dos Recursos Naturais/métodos , Pesqueiros/organização & administração , Peixes , Animais , Organismos Aquáticos , Humanos , Temperatura
6.
J Therm Biol ; 78: 270-276, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30509647

RESUMO

Organisms can mitigate the effects of long term variation in environmental conditions through acclimation, which involves changes in various physiological responses. To elucidate the possible effects of temperature and food concentrations on acclimation capacity, physiological responses of the mussel, Perna viridis, were measured after individuals were held for six weeks under varying temperatures and food availability. Warm-acclimated mussels experiencing higher food levels had significantly greater upper thermal limits than those maintained on lower food levels. In contrast, the upper thermal limits of cold-acclimated mussels were not affected by food levels. For warm-acclimated mussels, differences in upper thermal limits were likely due to rapid depletion of energy storage as predicted by Dynamic Energy Budget model simulations for P. viridis exposed to lower food levels. Clearance rates of cold-acclimated mussels were significantly lower than warm-acclimated mussels, regardless of food availability. The impacts of lower food acquisition on energy storage, however, could be compensated by lower metabolic rates of the cold-acclimated mussels. The availability and the ability to acquire food are not, therefore, the main drivers differentiating between the upper thermal tolerances of cold- and warm-acclimated mussels, but these differences are driven by the past thermal history the mussels experienced. The temperature tolerance range of P. viridis showed a positive shift to tolerate higher temperatures after acclimation. Such flexibility in thermal tolerance implies P. viridis has high capacity to acclimate to novel environments, which will enhance its future success given its commercial importance as an aquaculture species.


Assuntos
Dieta , Perna (Organismo)/fisiologia , Termotolerância , Animais , Metabolismo Energético
7.
Fish Shellfish Immunol ; 62: 147-152, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28108343

RESUMO

In the last few decades, technological developments and the widespread rise of anthropic activities have increased the exposure of organisms to noise pollution, thus evoking great interest in its biological effects, particularly on the immune system. The aim of the present work was to investigate some of the biochemical parameters in the blood of Chromis chromis (Linnaeus, 1758) following in vivo exposure to noise levels of 200 and 300 Hz. Our results revealed that, compared to the control specimens, the fish exposed to noise had significantly increased levels of stress biomarkers such as glucose, lactate and total proteins in plasma, as well as a rise in the expression of heat shock protein 70 (HSP70).


Assuntos
Glicemia/metabolismo , Proteínas Sanguíneas/metabolismo , Ácido Láctico/sangue , Ruído/efeitos adversos , Perciformes/fisiologia , Estresse Fisiológico , Animais , Proteínas de Choque Térmico HSP70/sangue , Distribuição Aleatória
8.
Can J Microbiol ; 63(4): 303-311, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28177796

RESUMO

Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Ecossistema , Hidrocarbonetos/metabolismo , Filogenia
9.
J Exp Biol ; 219(Pt 5): 686-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747904

RESUMO

Although thermal performance is widely recognised to be pivotal in determining species' distributions, assessment of this performance is often based on laboratory-acclimated individuals, neglecting their proximate thermal history. The thermal history of a species sums the evolutionary history and, importantly, the thermal events recently experienced by individuals, including short-term acclimation to environmental variations. Thermal history is perhaps of greatest importance for species inhabiting thermally challenging environments and therefore assumed to be living close to their thermal limits, such as in the tropics. To test the importance of thermal history, the responses of the tropical oyster Isognomon nucleus to short-term differences in thermal environments were investigated. Critical and lethal temperatures and oxygen consumption were improved in oysters that previously experienced elevated air temperatures, and were associated with an enhanced heat shock response, indicating that recent thermal history affects physiological performance as well as inducing short-term acclimation to acute conditions. These responses were, however, associated with trade-offs in feeding activity, with oysters that experienced elevated temperatures showing reduced energy gain. Recent thermal history, therefore, seems to rapidly invoke physiological mechanisms that enhance survival of short-term thermal challenge but also longer term climatic changes and consequently needs to be incorporated into assessments of species' thermal performances.


Assuntos
Aclimatação , Temperatura Alta , Ostreidae/fisiologia , Animais , Ecossistema , Resposta ao Choque Térmico , Consumo de Oxigênio/fisiologia
10.
Plants (Basel) ; 13(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38256716

RESUMO

Marine Protected Areas (MPAs) are vital for biodiversity conservation, yet their effectiveness in preserving foundation seaweeds remains understudied. This study investigates the diversity and distribution of Cystoseira sensu lato (including Cystoseira, Ericaria, and Gongolaria, hereafter referred to as Cystoseira s.l.) populations in an MPA located in the central Mediterranean Sea, comparing them with those in two unprotected sites. We hypothesized MPA Cystoseira s.l. populations would display higher diversity and structure compared to outside unprotected sites. Results revealed a total of 19 Cystoseira s.l. species at depths of 0-20 m, with the MPA exhibiting a higher diversity than unprotected sites. Thus, MPAs can play a crucial role in fostering the diversity of Cystoseira s.l. populations. However, no significant differences were observed among the MPA's protection zones, raising questions about the zoning effectiveness. Additionally, our survey uncovered a substantial presence of non-indigenous seaweeds within the MPA. In conclusions, while MPAs improved Cystoseira s.l. diversity compared to unprotected sites, the varying efficacy of protection within MPA zones suggested a necessity for site-specific conservation strategies. The presence of non-indigenous seaweeds emphasizes ongoing challenges. This study provides a baseline for understanding Cystoseira s.l. population dynamics, crucial for future monitoring and conservation efforts in the face of global change.

11.
Mar Pollut Bull ; 199: 115983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277962

RESUMO

Many studies addressed ocean acidification (OA) effects on marine life, whereas its effects on sedimentary organic matter (OM) have received less attention. We investigated differences in OM features in sediments from unvegetated and seagrass (Posidonia oceanica) beds in a shallow hydrothermal area (Aeolian Archipelago, Mediterranean Sea), under natural (8.1-8.0) and acidified (7.8-7.9) conditions. We show that a pH difference of -0.3 units have minor effects on OM features in unvegetated sediments, but relevant consequences within acidified seagrass meadows, where OM quantity and nutritional quality are lower than those under natural pH conditions. Effects of acidified conditions on OM biogeochemistry vary between unvegetated and seagrass sediments, with lower C degradation rates and longer C turnover time in the former than in the latter. We conclude that OA, although with effects not consistent between unvegetated and vegetated sediments, can affect OM quantity, composition, and degradation, thus having possible far-reaching consequences for benthic trophic webs.


Assuntos
Alismatales , Água do Mar , Água do Mar/química , Ecossistema , Concentração de Íons de Hidrogênio , Alismatales/química , Sedimentos Geológicos/química
12.
Sci Total Environ ; 947: 174562, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981544

RESUMO

The Ross Sea Marine Protected Area (RS-MPA) hosts endemic species that have to cope with multiple threats, including chemical contamination. Adèlie penguin is considered a good sentinel species for monitoring pollutants. Here, 23 unhatched eggs, collected from three colonies along the Ross Sea coasts, were analysed to provide updated results on legacy pollutants and establish a baseline for newer ones. Average sum of polychlorinated biphenyls (∑PCBs) at the three colonies ranged 20.9-24.3 ng/g lipid weight (lw) and included PCBs IUPAC nos. 28, 118, 153, 138, 180. PCBs were dominated by hexachlorinated congeners as previously reported. Hexachlorobenzene (HCB) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) ranged between 134 and 166 and 181-228 ng/g lw, respectively. Overall, ∑PCBs was exceeded by pesticides, contrary to previous studies from the Ross Sea. Sum of polybrominated diphenyl ethers (∑PBDEs) ranged between 0.90 and 1.18 ng/g lw and consisted of BDE-47 (that prevailed as expected, representing 60-80 % of the ∑PBDEs) and BDE-85. Sum of perfluoroalkyl substances (∑PFAS) ranged from 1.04 to 1.53 ng/g wet weight and comprised five long-chain perfluorinated carboxylic acids (PFCAs), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA); perfluorooctane sulfonamide (PFOSA) was also detected. The PFAS profile was dominated by PFCAs as already observed in Arctic seabirds. Mercury ranged from 0.07 to 0.15 mg/kg dry weight similarly to previous studies. Legacy pollutants confirmed their ongoing presence in Antarctic biota and their levels seemed mostly in line with the past, but with minor variations in some cases, likely due to continued input or release from past reservoirs. PFAS were reported for the first time in penguins from the Ross Sea, highlighting their ubiquity. Although further studies would be useful to increase the sample size and accordingly improve our knowledge on spatial and temporal trends, this study provides interesting data for future monitoring programs within the RS-MPA that will be crucial to test its effectiveness against human impacts.

13.
Sci Rep ; 14(1): 5888, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467723

RESUMO

Among marine ecosystems globally, those in the Mediterranean Sea, are facing many threats. New technologies are crucial for enhancing our understanding of marine habitats and ecosystems, which can be complex and resource-intensive to analyse using traditional techniques. We tested, for the first time, an integrated multi-platform approach for mapping the coastal benthic habitat in the Civitavecchia (northern Latium, Italy) coastal area. This approach includes the use of an Unmanned Surface Vehicle (USV), a Remote Operated Vehicle (ROV), and in situ measurements of ecosystem functionality. The echosounder data allowed us to reconstruct the distribution of bottom types, as well as the canopy height and coverage of the seagrass Posidonia oceanica. Our study further involved assessing the respiration (Rd) and net primary production (NCP) rates of P. oceanica and its associated community through in situ benthic chamber incubation. By combining these findings with the results of USV surveys, we were able to develop a preliminary spatial distribution model for P. oceanica primary production (PP-SDM). The P. oceanica PP-SDM was applied between the depths of 8 and 10 m in the studied area and the obtained results showed similarities with other sites in the Mediterranean Sea. Though in the early stages, our results highlight the significance of multi-platform observation data for a thorough exploration of marine ecosystems, emphasizing their utility in forecasting biogeochemical processes in the marine environment.


Assuntos
Alismatales , Ecossistema , Mar Mediterrâneo , Itália
14.
PLoS One ; 18(8): e0289611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549137

RESUMO

The blue crab Callinectes sapidus (Rathbun, 1896) is one of the most invasive species in the Mediterranean Sea. Understand how the populations are maintained and how the environment is driving the populations in the areas invaded is the key to an effective future management. This current study is presenting a monthly long-term monitoring of the blue crabs' population structure, body size, sexual maturity, reproduction periods and fecundity, and their relationships with environmental factors in a saltmarshes system in Italy. During winter, high densities (15 ± 8 ind m-2) of early juveniles (< 2 cm) were observed, and their numbers decreased due the population growth until summer. The size-spectra showed that across different temperature (18-26°C) and salinity (24-40 psu) gradients, the growth period for males is faster than for females. Based on abdominal analysis, sexual maturity was defined at ∼12 cm for males and females but the population was in favor of males that were more than 66% of the time mature throughout the year. Copulations periods were identified between spring and autumn when more than 50% of females were matures, and ovigerous females' migrations were observed in late summer. Our study expand our understanding of how the environment interacts to effect physiological and biological processes of alien species and improve our ability to make predictions of how environmental change the distribution of the alien species in the future. Based on our results, we also discuss which population control strategy would be most effective based on the data available in the literature.


Assuntos
Braquiúros , Animais , Feminino , Masculino , Braquiúros/fisiologia , Mar Mediterrâneo , Fertilidade , Reprodução , Estações do Ano , Espécies Introduzidas
15.
Mar Pollut Bull ; 194(Pt A): 115272, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442052

RESUMO

The two invasive blue crabs, Callinectes sapidus and Portunus segnis have spread rapidly in the Mediterranean and no data exists on the connectivity of populations. Determining the source and recruitment areas is crucial to prioritize where population control measures should be put into immediate action. We simulated the dispersal of blue crab larvae using a Lagrangian model coupled at high resolution to estimate the potential connectivity of blue crab populations over a 3-year period. Our results reveal that the main areas at risk are the Spanish, French, Italian Tyrrhenian and Sardinian coasts for Callinectes sapidus with high populations connectivity. Tunisia and Egypt represent high auto recruitment zones for Portunus segnis restricted to the central and western basins. This study provides an overview of the connectivity between populations and will help define priority areas that require the urgent implementation of management measures.


Assuntos
Braquiúros , Animais , Itália , Larva , Mar Mediterrâneo , Tunísia
16.
Sci Rep ; 13(1): 11558, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464005

RESUMO

Eutrophication affects coastal oceans worldwide, modifies primary production and sediment biogeochemistry and, overall, is progressively compromising marine ecosystems' integrity. Because of their known bioturbation ability, sea cucumbers are supposed to be candidates for mitigating benthic eutrophication. To provide insights on this, we investigated differences in organic matter quantity and biochemical composition (as proxies of benthic trophic status) of sediments and feces of the sea cucumber Holothuria tubulosa acclimated in mesocosms at temperatures comprised between natural conditions (14-26 °C) and an extreme of 29 °C (representing the highest anomaly under heat waves in the Mediterrranean Sea). Organic matter features differed significantly between sediments characterized by different trophic statuses and the holothuroid's feces, though with some exceptions. Feces resulted almost always organically enriched when compared with the ambient sediments, though with variable differences in composition in sediments characterized by different initial trophic status. Our results point out that sea cucumbers maintain their bioreactor capacity at all experimental temperatures including the (anomalous) highest one, irrespectively of the available food, suggesting that they could be profitably utilized to mitigate benthic eutrophication also in a warmer Mediterranean Sea.


Assuntos
Ecossistema , Pepinos-do-Mar , Animais , Sedimentos Geológicos/química , Temperatura , Mar Mediterrâneo
17.
Biology (Basel) ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38248440

RESUMO

As a result of climate change, the Mediterranean Sea has been exposed to an increase in the frequency and intensity of marine heat waves in the last decades, some of which caused mass mortality events of benthic invertebrates, including sponges. Sponges are an important component of benthic ecosystems and can be the dominant group in some rocky shallow-water areas in the Mediterranean Sea. In this study, we exposed the common shallow-water Mediterranean sponge Chondrilla nucula (Demospongiae: Chondrillidae) to six different temperatures for 24 h, ranging from temperatures experienced in the field during the year (15, 19, 22, 26, and 28 °C) to above normal temperatures (32 °C) and metabolic traits (respiration and clearance rate) were measured. Both respiration and clearance rates were affected by temperature. Respiration rates increased at higher temperatures but were similar between the 26 and 32 °C treatments. Clearance rates decreased at temperatures >26 °C, indicating a drop in food intake that was not reflected by respiration rates. This decline in feeding, while maintaining high respiration rates, may indicate a negative energy balance that could affect this species under chronic or repeated thermal stress exposure. C. nucula will probably be a vulnerable species under climate change conditions, affecting its metabolic performance, ecological functioning and the ecosystem services it provides.

18.
Sci Total Environ ; 858(Pt 3): 160037, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356730

RESUMO

Biodiversity can promote ecosystem functioning in both terrestrial and marine environments, emphasizing the necessity of biodiversity conservation in order to preserve critical ecosystem functions and associated services. However, the role of biodiversity in buffering ecosystem functioning under extreme events caused by climate change remains a major scientific issue, especially for intertidal systems experiencing stressors from both terrestrial and marine drivers. We performed a regional-scale field experiment along the Italian coast to investigate the response of unmanipulated intertidal communities (by using a natural biodiversity gradient) to low tide aerial exposure to both ambient and short-term extreme temperatures. We specifically investigated the relationship between Biodiversity and Ecosystem Functioning (BEF) using different biodiversity indexes (species richness, functional diversity and evenness) and the response of the intertidal communities' ecosystem functioning (community respiration rates). Furthermore, we investigated which other environmental variables could influence the BEF relationship. We show that evenness explained a greater variation in intertidal community ecosystem functioning under both temperature conditions. Species richness (the most often used diversity metric in BEF research) was unrelated to ecosystem functioning, while functional diversity was significantly related to respiration under ambient but not extreme temperatures. We highlight the importance of the short-term thermal history of the communities (measured as body temperature) in the BEF relationship as it was consistently identified as the best predictor or response under both temperature conditions. However, Chlorophyll a in seawater and variation in sea surface temperature also contributed to the BEF relationship under ambient but not under extreme conditions, showing that short-duration climate-driven events can overcome local physiological adaptations. Our findings support the importance of the BEF relationship in intertidal communities, implying that systems with more diverse and homogeneous communities may be able to mitigate the effects of extreme temperatures.


Assuntos
Ecossistema , Clorofila A
19.
Mar Environ Res ; 186: 105946, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36917890

RESUMO

Ocean acidification has been consistently evidenced to have profound and lasting impacts on marine species. Observations have shown seagrasses to be highly susceptible to future increased pCO2 conditions, but the responses of early life stages as seedlings are poorly understood. This study aimed at evaluating how projected Mediterranean Sea acidification affects the survival, morphological and biochemical development of Posidonia oceanica seedlings through a long-term field experiment along a natural low pH gradient. Future ocean conditions seem to constrain the morphological development of seedlings. However, high pCO2 exposures caused an initial increase in the degree of saturation of fatty acids in leaves and then improved the fatty acid adjustment increasing unsaturation levels in leaves (but not in seeds), suggesting a nutritional compound translocation. Results also suggested a P. oceanica structural components remodelling which may counteract the effects of ocean acidification but would not enhance seagrass seedling productivity.


Assuntos
Alismatales , Água do Mar , Água do Mar/química , Plântula , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Alismatales/fisiologia
20.
Animals (Basel) ; 13(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899805

RESUMO

In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in "ocean warming" and "sea surface temperature" are the most recent significant and dominant keywords in the coral reef and climate change area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA